Mathematical Problems of Computer Science 50, 111--118, 2018.

Performance Analysis of Matrix Multiplication Algorithms
Using MPI and OpenMP

Tigran M. Galstyan

Institute for Informatics and Automation Problems of NAS RA
e-mail: tig.galstyan.96@gmail.com

Abstract

The combination of OpenMP and MPI in programming is called hybrid
programming. Hybrid programming (through messages and shared memory) has
gained an important role since the appearance of cluster architectures. A hybrid
programming method combines the MPI and OpenMP libraries to use this
hierarchical multi-core architecture. The purpose of this work is to carry out the
performance analysis of matrix multiplication algorithms in a cluster system.
Each node in the cluster consists of multiple core CPUs, in which memory is
distributed among the nodes and shared memory. Algorithms use MPI as a
message-passing mechanism and OpenMP as shared memory.

Keywords: Hybrid, OpenMP, MPI, Matrix Multiplication, Fox.

1. Introduction

Parallel algorithms play an important role in the computation of high-performance computing
environment. Dividing a task into smaller tasks and assigning them to different processors for
parallel execution are two key concepts in the performance of parallel algorithms.
Multiprocessor machines allow simultaneous execution of different application programs on
different processors. They also allow a single application program to execute faster if it can be
rewritten to use multiple processors [1]. The most common way to write a parallel program is to
use a sequential language and a subroutine library. The bodies of process are written in the
sequential language such as C. Process creation, communication and synchronization are then
programmed by calling the library function. For message passing environment, we use the MPI.
The MPI functions are included in a header file called mpi.h [2, 3, 4]. For shared memory, we
use the OpenMP. The OpenMP functions are included in a header file called omp.h [2, 5].

111

112 Performance Analysis of Matrix Multiplication Algorithms Using MPI and OpenMP

Objective

The purpose of this work is to study hybrid programming. For example, Matrix Multiplication
using MPI1 and OpenMP. To carry out performance analysis of matrix multiplication algorithms
in cluster system. Implement matrix multiplication algorithms in C using OpenMP and MPI. To
create a Hybrid algorithm and to compare it with famous matrix multiplication algorithms, for
example, Fox algorithm. To compare algorithms by increasing the size of order matrix.

2. MPI

Message Passing Interface (MPI) is a standardized and portable message-passing standard
designed by a group of researchers from academia and industry to function on a wide variety of
parallel computing architectures. The standard defines the syntax and semantics of a core of
library routines useful to a wide range of users writing portable message-passing programs in C,
C++, and Fortran. There are several well-tested and efficient implementations of MPI, many of
which are open-source or in the public domain. They fostered the development of a parallel
software industry, and encouraged the development of portable and scalable largescale parallel
applications [6].

3. OpenMP

The OpenMP (Open Multi-Processing) APl supports multi-platform shared-memory parallel
programming in C/C++ and Fortran. The OpenMP API defines a portable, scalable model with a
simple and flexible interface for developing parallel applications on platforms from the desktop
to the supercomputer. An application built with the hybrid model of parallel programming can
run on a computer cluster using both OpenMP and Message Passing Interface (MPI), such that
OpenMP is used for parallelism within a (multi-core) node while MPI is used for parallelism
between nodes. Attempts have also been made to run OpenMP on software distributed shared
memory systems, to translate OpenMP into MPI and to extend OpenMP for non-shared memory
systems [7].

4. Matrix Multiplication

In mathematics, matrix multiplication or matrix product is a binary operation that produces a
matrix from two matrixes. In more detail, if A is an n X m matrix and B is an m x p matrix, their
matrix product AB is an n x p matrix, in which the m entries across a row of A are multiplied by
the m entries down a column of B and summed to produce an entry of AB (Figure 1) .

https://en.wikipedia.org/wiki/Message-passing
https://en.wikipedia.org/wiki/Message-passing
https://en.wikipedia.org/wiki/Message-passing
https://en.wikipedia.org/wiki/Message-passing
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Parallel_programming
https://en.wikipedia.org/wiki/Parallel_programming
https://en.wikipedia.org/wiki/Parallel_programming
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Distributed_shared_memory
https://en.wikipedia.org/wiki/Distributed_shared_memory
https://en.wikipedia.org/wiki/Distributed_shared_memory
https://en.wikipedia.org/wiki/Distributed_shared_memory
https://en.wikipedia.org/wiki/Distributed_shared_memory

T. Galstyan 113

Fig. 1. Matrix Multiplication.

If Aisannx m matrix and B is an m x p matrix, then C = AB is an n x p matrix, and the value
of each element in C is defined as:

m
Cij = AiByj + -+ AimBmj = Zk_lAikBkj-

Its computational complexity is O (n3) (for n x n matrices). To improve performance, we have added
OpenMP and MPI.

5. Hybrid Experiment

Matrix C is calculated in each node using OpenMP. To do so, each process receives a piece of
the matrix A and the matrix B, sent to all processes. The number of orders C matrix is divisible
by the number of processes. The algorithm uses a master/worker-type interaction, where
the master works both as coordinator and as a worker. It divides the matrix A into pieces to be
processed, and then generates the processing phases (Figure 2).

A

Process 2
7~ n Bl

Process 3

B Process 4

Fig. 2. Matrix multiplication by processes.

https://en.wikipedia.org/wiki/Computational_complexity
https://en.wikipedia.org/wiki/Computational_complexity
https://en.wikipedia.org/wiki/Computational_complexity

114 Performance Analysis of Matrix Multiplication Algorithms Using MPI and OpenMP

6. Fox's Algorithm

Fox algorithm is one of the known solutions to this problem. Details of the algorithm are given
below: [8]

A and B are n xn matrixes.

Compute C = AB in parallel.

Let ¢ = Vp be an integer such that it divides n, where p is the number of processes. Create a
Cartesian topology [9] with processes (i,j), (i,j = 0,...,q — 1).

Denote m = n/q Distribute A and B by blocks on p processes so that A; j and B; ; are m x m
blocks stored on process (i, j).

On process (i, j),we want to compute:

q—1
Cij = k_OAikBkj = AjoBoj + AinByj + -+ Ay jo1Biqj + AijBij + Ay j11Biygj + o+
Aiq-1Bq-1,

Rewrite this as:
Stage Compute
0 Cij = AiiBij
1 Cyj= Cj+A11Bit1;

q-1 Cj= Cj;+A;;-1Bi_4
Each process computes in stages:
Stage 0

= process (i,j) has A, B;;but needs 4;;
= process (i,i) broadcasts 4;; across processor row i
» process (i,j) computes C;; = A;B;j

Stage 1

= process (i,j) has A;j, B;; but needs A; ;+1B;+1,
0 shift the jth block column of B by one block up (block 0 goes to block q — 1)

0 process (i,i+ 1) broadcasts A;;;; across processor row i
= process (i,j) computes C;; = Cyj + A;j41Bit1

Similarly, in the next stages.

7. Results

T. Galstyan

115

The following tables and charts show the execution times (expressed in seconds), the difference

in time between the algorithms. Table 1 and Chart 1 show the difference between the Hybrid

experiment, the Sequential algorithm and the Sequential algorithm with OpenMP.

Table 1:
Sequential Sequential +OpenMP | Hybrid
(sec) (sec) (sec)
200x200 0,06 0,059 0,04
400x400 0,65 0,59 0,3
500x500 2 1.28 0.36
1000x1000 23 20 10
1500x1500 102 90 46
2000x2000 280 200 128
2500x2500 513 439 280
3000x3000 995 831 500
Chart 1:
Matrix Mul [Size X Size]
Seconds
1200
1000
800
600
400
200
° 0 500 1000 1500 2000 2500 3000 3500 :
Size
Seauential

Seauential + OpenMP
Hvbrid Experiment

116 Performance Analysis of Matrix Multiplication Algorithms Using MPI and OpenMP

Table 2 and Chart 2 show the difference between the Hybrid experiment and the Fox algorithm
on 4 processes.

Table 2:
Size Hybrid Fox
(sec) (sec)
50x50 0,002 0,019
100x100 0,018 0,032
200x200 0,04 0,05
300x300 0,15 0,18
400x400 0,3 0,31
500x500 0,56 0,55
750x750 3,5 2,9
1000x1000 10 8
1500x1500 46 40
2000x200 128 113
2500x2500 280 250
Chart 2:

Matrix Mul [SizeXSize]

4 processes
Seconds

0,7

0,6

0 200 400 600
Size

Hybrid Fox

T. Galstyan 117

8. Conclusions and Future Work

As it can be observed, the time difference between the Hybrid experiment and the sequential
algorithm with OpenMP is large.

As you can see, there is a difference between the Hybrid experiment and the Fox algorithm.
The hybrid experiment runs faster up to 500x500 matrices. After 500x500, the Fox algorithm
runs faster.

The hybrid experiment runs faster up to 500 x 500 matrices, because one of the matrices was
shared to all processes. when the matrix size is not large, the matrix shared quickly, so time is
faster than Fox algorithm time.

For the future, it is planned to improve the efficiency of the hybrid experiment, to make the
code faster than the fox algorithm for matrices over 500x500.

References

[1] J. Ali and R. Zaman, Performance Analysis of Matrix Multiplication Algorithms Using
MPI: Khan Department of Computer Science, Aligarh Muslim University, Aligarh.
Parallel Programming in C with MPI and OpenMP — by Michael J. Quinn.

[2] Parallel Programming in C with MPI and OpenMP — by Michael J. Quinn.

[3] [Online]. Available: https://www.open-mpi.org/

[4] [Online]. Available: https://www.mpich.org/

[5] [Online]. Available: https://www.openmp.org/

[6] [Online]. Available: https://en.wikipedia.org/wiki/Message_P assing_Interface

[7] [Online]. Available: https://en.wikipedia.org/wiki/OpenMP

[8] Ned Nedialkov, Communicators and Topologies: Matrix Multiplication Example,
McMaster University Canada CS/SE 4F03 March 2016.

[9] [Online]. Available: http://pages.tacc.utexas.edu/~eijkhout/pcse/html/mpi-topo.html

Submitted 22.05.2018, accepted 20.11.2018.

Uwwnphgubkph puquuuyunjdul wpnunpoqujutnipjut
yJtpnidnipiniip oqunugnpdtiny OpenMP L MPI

S. Qujuuyu
Udthnthnid

OpenMP L1 MPI hwdwnpnipinitp spuqpuynpdwitt dby wtduinid Eu hhpphnujht
dpwgpuynpnid: Zhpphyuyhtt Spwugpuynpnidp (hwnnppugpnipinibtph b punhwinip
hhonnnipyniiutiph Uhgongny) 4tnp E phpby Ukd hudpuwyd Yuwunbkpuyht
Supunuwpuybnnipjut hwynugbinig hkwnn: Zhpphnwjhtt Spuqpuynpnidp vhwynpnid
E OpenMP b MPI gqpunupwutbpp puquuuhoniujhtt fupunnupuybnnipniuibpnid

https://www.amazon.co.uk/Parallel-Programming-C-MPI-OpenMP/dp/0072822562
https://www.amazon.co.uk/Parallel-Programming-C-MPI-OpenMP/dp/0072822562
https://www.amazon.co.uk/Parallel-Programming-C-MPI-OpenMP/dp/0072822562
https://www.open-mpi.org/
https://www.open-mpi.org/
https://www.open-mpi.org/
https://www.open-mpi.org/
https://www.openmp.org/
https://www.openmp.org/
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/OpenMP
https://en.wikipedia.org/wiki/OpenMP
http://pages.tacc.utexas.edu/%7Eeijkhout/pcse/html/mpi-topo.html
http://pages.tacc.utexas.edu/%7Eeijkhout/pcse/html/mpi-topo.html
http://pages.tacc.utexas.edu/%7Eeijkhout/pcse/html/mpi-topo.html
http://pages.tacc.utexas.edu/%7Eeijkhout/pcse/html/mpi-topo.html
http://pages.tacc.utexas.edu/%7Eeijkhout/pcse/html/mpi-topo.html

118 Performance Analysis of Matrix Multiplication Algorithms Using MPI and OpenMP

ognugnpsknt hwdwnp:Uju woppwwnwiph tyuwnwljn £ nnipu phipl] dwnphgubph
puquuyundut wpununpnpuljuunipjut Jbpnidnipjniup Jluwunbpuhe
huwdwlwupgnid: S8nmipwpwsinip hwugnyg Yuwunbkpmd YJuqudws b dp pwbh
JEuwnpntwlwt wpngbhunpubphg, npnugmd pwdwbynmd £ hhonnpnipinibp
hwignygbph vhol b hwdwwnkn hhonynipjuit: Ujgnphpdp oguimgnpénid £ MPI-p
hwnnpnugpnipnituip niquplint hwdwp b OpenMP® hhonnmipjut pudwidwb
hwdwnp:

AHAJIU3 NPOU3BOIUTEILHOCTH MATPUYHBIX AJITOPUTMOB YMHOKEHHUSI €
ucnosb3oBanneM MPI u OpenMP

T. Tanctsan
AHHOTaANuA

KomOunammst OpenMP wu MPI B mnporpaMvmupoBaHMM Ha3bIBACTCS THOPHIAHBIM
nporpaMMupoBaHueM. [uOpuaHOe mporpaMMUpOBaHHE (IIOCPEACTBOM COOOIICHUH U
paszmenseMor TaMsaTH) MpuoOpeno OONBIIYI0 pOJIb C MOMEHTAa TOSBJICHHS KIACTEPHBIX
apxXuTeKTyp. Merona rubpuaHOro nporpaMmupoBanus oobeaunser 6udnmoreku MPI u OpenMP
JUISL MICTIOJIb30BaHUSI ITOW HMEpapXUUECKOW MHOTOSIEPHOM apXUTEKTyphl. Llenb 3Toit paboThl -
BBINIOJIHUTH AJTOPUTMbl YMHOXXEHMSI MaTpUIBl aHalIM3a IPOU3BOAUTEIBHOCTH B KJIACTEPHOM
cucreme. Kaxiplif y3en KiacTepa COCTOMT M3 HECKOJIBKMX LEHTPAJbHBIX MPOIECCOPOB, B
KOTOpBIX MaMsATh paclpeaerceHa MeXAy Y3JaMu M pasAeisieMod NaMmsAThio. AJIFOpUTMBI
ucnonb3ylor MPI B kadecTBe MexaHm3ma mnepenaun coobOmeHuii u OpenMP B kauyectBe
COBMECTHO HCMOJIb3yeMOU MaMsTH.

	1. Introduction
	3. OpenMP
	4. Matrix Multiplication
	5. Hybrid Experiment
	7. Results
	8. Conclusions and Future Work

