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a b s t r a c t

The question of necessary and sufficient conditions for the existence of a simple hypergraph
with a given degree sequence is a long-standing open problem. Let ψm(n) denote the
set of all degree sequences of simple hypergraphs on vertex set [n] = {1, 2, · · · , n} that
have m edges. A simple characterisation of ψm(n) is defined in terms of its upper and/or
lower elements (degree sequences). In the process of finding all upper degree sequences, a
number of results have been achieved in this paper. Classes of upper degree sequenceswith
lowest rank (sum of degrees) rmin and with highest rank rmax have been found; in the case
of rmin, the unique class of isomorphic hypergraphs has been determined; the case of rmax
leads to the simple uniform hypergraph degree sequence problem. A smaller generating
set has been found forψm(n). New classes of upper degree sequences have been generated
from the known sequences in dimensions less than n.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Let En be the set of vertices of the n-dimensional unit cube, En
= {(x1, . . . , xn)/xi ∈ {0, 1}, i = 1, . . . , n}. For an arbitrary

variable xi consider the partition/splitting of En into two (n − 1)-dimensional subcubes of En according to the value of xi:

En−1
xi=1 = {(x1, . . . , xn) ∈ En/xi = 1}, En−1

xi=0 = {(x1, . . . , xn) ∈ En/xi = 0}.

Each set E ⊆ En will have (empty or non-empty) subsets in these subcubes: Ex1=1 and Ex1=0. Similarly, En can be split
according to more than one variable. Splitting by the set of variables xi1 , . . . , xik we obtain 2k (n− k)-dimensional subcubes,
where the values of the variables xi1 , . . . , xik are appropriately fixed in each of them. The notations are defined in a similar
manner. For example, En−k

xi1=1,...,xik=1 = {(x1, . . . , xn) ∈ En/xi1 = 1, . . . , xik = 1}, and Exi1=1,...,xik=1 denotes the part of E in

En−k
xi1=1,...,xik=1.
An integer vector d = (d1, . . . , dn) is called the associated vector of partitions (1-partitions) of the set E ⊆ En if di = |Exi=1|

for all i, 1 ≤ i ≤ n. In general, different sets may have the same associated vector of partitions. We consider the question
of the existence of vertex sets in En with the given associated vector of partitions. This problem is known also in terms of
families of sets or hypergraphs.

Consider the power set of [n] = {1, 2, . . . , n} and its partial order by inclusion. Identify subsets of [n] with (0, 1)-
sequences of length n such that the i-th entry equals ‘1’ if and only if the i-th element of [n] is included in the subset. In this
manner, we obtain a mapping of the power set into En. Each set E ⊆ En can be identified with a family of subsets of [n] or
with a simple hypergraph H on vertex set [n], whose edges are determined by the elements of E . The degree of a vertex i
is equal to |Exi=1|. In these terms the existence of vertex sets in En with the given associated vector of partitions becomes
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Fig. 1. Hasse diagram of the 5-dimensional unit cube.

equivalent to the existence of a simple hypergraph H with the given degree sequence. This is a long-standing open problem
known as the hypergraph degree sequence problem [1]. The hypergraph degree sequence problem has been investigated
by several authors [8,2,3,6,4]. In particular, the polytope of degree sequences of r-uniform hypergraphs was studied in [2]
and some partial information was obtained. It was proved in [6] that any two 3-uniform hypergraphs with the same degree
sequence can be transformed into each other using a sequence of trades. Steepest degree sequences were defined in [3]
and it was proved that the entire set of degree sequences of simple uniform hypergraphs can be determined by its steepest
elements.

For a given m, 0 ≤ m ≤ 2n, let ψm(n) denote the set of all degree sequences of simple hypergraphs on the vertex set
[n] that have m edges. The upper and lower elements of ψm(n)were defined in [8], where it was proved that ψm(n) can be
determined by the set of its upper and/or lower elements. In this paper, we present results which may be useful in finding
all upper degree sequences. In Section 2, we find classes of upper degree sequences with lowest rank (sum of degrees)
rmin and with highest rank rmax. We determine Hrmin and Hrmax, the corresponding classes of simple hypergraphs. While
Hrmin is unique up to isomorphism class, the characterisation ofHrmax leads to the hypergraph degree sequence problem for
simple uniform hypergraphs. Section 3 is devoted to finding a smaller generating set for ψm(n); we prove that ψm(n) can
be determined by the intersection of the set of its upper elements and the set of its steepest elements. Section 4 deals with
the process of generating new classes of upper degree sequences from the known sequences of dimension less than n.

We present the results in terms of hypergraphs and degree sequences. However, where it is technically reasonable, we
use the means of En and a splitting of En in one or two directions. We use the geometrical mapping of En by the Hasse
diagram. The diagram has n+ 1 levels numbered from 0 (the lowest level) to n; the k-th level contains all vertices that have
k entries equal to 1. Edges connect those vertices in neighbouring levels that are related by a cover relation. Fig. 1 shows the
Hasse diagram of E5.

2. Generating ψm(n) using the upper elements

2.1. Preliminaries

For a given m, 0 ≤ m ≤ 2n, let ψm(n) denote the set of all degree sequences of simple hypergraphs on the vertex set [n]
that have m edges. Define the greed Ξ n

m+1 as Ξ n
m+1 = {(a1, . . . , an) : 0 ≤ ai ≤ m for all i} and place a component-wise

partial order on Ξ n
m+1: (a1, . . . , an) ≤ (b1, . . . , bn) if and only if ai ≤ bi for all i. This order makes Ξ n

m+1 a ranked partially
ordered set (poset) for which the rank of an element (a1, . . . , an) is given by a1 + · · ·+ an. In this manner,ψm(n) is a subset
ofΞ n

m+1.

Definition 1 ([8]). A degree sequence (d1, . . . , dn) ∈ ψm(n) is called an upper (lower) degree sequence for ψm(n) if no
(a1, . . . , an) ∈ Ξ n

m+1 with (a1, . . . , an) > (d1, . . . , dn) ((a1, . . . , an) < (d1, . . . , dn)) belongs to ψm(n).

Denote by ψ̂m(n) and ψ̌m(n) the sets of all upper and lower degree sequences of ψm(n) respectively.
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Fig. 2. Illustration of upper degree sequences.

List of some properties of upper/lower degree sequences from [8]:

(P1). ψm(n) is symmetric, and elements of ψ̂m(n) and ψ̌m(n) appear in pairs: for each d̂ ∈ ψ̂m(n), there exists a ď in ψ̌m(n)
that is obtained from d̂ by inverting its coordinates, ďi = m − d̂i, and vice versa. We call such elements opposites.
Hence |ψ̂m(n)| = |ψ̌m(n)|.

(P2). d̂i ≥ m/2 for each d̂ ∈ ψ̂m(n), and ďi ≤ m/2 for each ď ∈ ψ̌m(n).
(P3). ψ̂m and ψ̌m are antichains inΞ n

m+1.

Consider the following special subposets in Ξ n
m+1: I(ď, d̂) = {a ∈ Ξ n

m+1/ď ≤ a ≤ d̂}, where (ď, d̂) is a pair of opposite
elements from ψ̌m(n) and ψ̂m(n).

Theorem 1 ([8]). ψm(n) =


d̂∈ψ̂m(n) I(ď, d̂).

Thus, ψ̂m(n) and/or ψ̌m(n) can be considered as generating sets for constructing all elements of ψm(n). We restrict our
attention to ψ̂m(n). It is worth noting the relation of ψ̂m(n) to the monotone Boolean functions defined on En. Each set of
vertices of En can be identifiedwith the set of 1 values of someBoolean function. In thismanner,monotone Boolean functions
represent a specific class of sets in En. Consider M1

m, the class of m-sets in En represented by monotone Boolean functions
withm values 1, and letψM1

m (n) denote the class of corresponding associated vectors of partitions/degree sequences. It was
proved in [8] that ψ̂m(n) ⊂ ψ

M1
m (n). Thus, one method for determining all elements of ψ̂m(n) is to construct all monotone

Boolean functions that havem values 1.

2.2. Upper elements with lowest rank

Consider the Hasse diagram ofΞ n
m+1. It hasm · n+ 1 levels according to the ranks of elements: the i-th level contains all

elements at rank i. Suppose that rmin and rmax are the lowest and highest ranks for upper degree sequences. Obviously rmax
is the highest rank for any degree sequence. An illustration is given in Fig. 2.

In this subsection we define a class Hrmin and prove that Hrmin is the unique up to isomorphism class of simple
hypergraphs that have upper degree sequences with lowest rank.

Consider the reverse lexicographic ordering on En: (α1, . . . , αn) < (β1, . . . , βn) if and only if the numeric value of
(α1, . . . , αn) is greater than that of (β1, . . . , βn). Observe that the first 2n−1 elements compose En−1

x1=1 and the remaining
2n−1 elements compose En−1

x1=0; both are in the reverse lexicographic order of elements. Continue recursively with this
observation: the first 2t elements, and consequently, each 2t elements for arbitrary t , compose t-dimensional subcubes.
The values of x1, . . . , xn−t are appropriately fixed in each of them. Let Rm(n) denote the initial m-length sequence of the
reverse lexicographic ordering on En. It is easy to check that Rm(n) corresponds to the set of 1 values of a monotone Boolean
function. The structure of this set can be illustrated as in Fig. 3, where k1, . . . , kp are parameters in binary representation of
m : m = 2k1 + · · · + 2kp .

(P4). Let 2t < m ≤ 2t+1. The initial m-sequence of the reverse lexicographic ordering on En corresponds to that on
Et
x1=1,...,xn−t−1=1; it consists of the entire t-dimensional subcube Et

x1=1,...,xn−t=1, and the remaining elements compose
the initial (m − 2t )-sequence in Et

x1=1,...,xn−t=0.
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Fig. 3. The structure of the initial segment of the reverse lexicographic ordering.

(P5). Let (d1, . . . , dn)denote the associated vector of partitions ofRm(n). Then, d1 is the largest possible value of the partition
size for any m-set, d2 is the next largest value for fixed d1, and so forth. Obviously, d1 ≥ · · · ≥ dn.

If the lexicographic ordering applies to all permutations of (x1, . . . , xn), then the initial m-sequences in all these orderings
will induce a class of isomorphic monotone Boolean functions. Let Hrmin denote the corresponding class of isomorphic
hypergraphs and d(Hrmin) denote the class of their degree sequences.

Before formulation of the next theorem we present the following lemma that helps to narrow our attention to the case
m ≤ 2n−1.

Lemma 1. Let E1 ∈ M1
m, and let (d1, . . . , dn) be the association vector of partitions of E1. Then, there exists E2 ∈ M1

2n−m with
the associated vector of partitions equal to (2n−1

− m + d1, . . . , 2n−1
− m + dn).

Proof. The lemma has been proved by taking the complement of E1 in En, and then inverting it. �

According to Lemma 1 we consider 1 < m ≤ 2n−1 omittingm = 1 as obvious. Suppose that 2k < m ≤ 2k+1 for some k, and
thus 0 ≤ k ≤ n − 2.

Theorem 2. d(Hrmin) ⊆ ψ̂m(n).

Proof. Let H ∈ Hrmin and (d1, . . . , dn) is the degree sequence of H . Assume that E is the m-set in En, that represents the
edges of H . We perform the proof by induction on n. It is easy to confirm that the assertion is true for small n. We assume it
is true for all dimensions ≤ n− 1 and prove it for n. Suppose for a contradiction that there exists (s1, . . . , sn) ∈ ψ̂m(n), with
(s1, . . . , sn) > (d1, . . . , dn). Let A be anm-set in En, with partition sizes given by (s1, . . . , sn). By Property P4, E is the initial
(≤2k+1)-sequence of the reverse lexicographic ordering on Ek+1

x1=1,...,xn−k−1=1, which implies that d1 = · · · = dn−k−1 = m.
Then, s1 = · · · = sn−k−1 = m; hence, A is included in Ek+1

x1=1,...,xn−k−1=1 as well. This moves consideration of E and A

into the (k + 1)-dimensional unit cube Ek+1. Now the corresponding degree sequences are as follows: (dn−k, . . . , dn) and
(sn−k, . . . , sn), and (sn−k, . . . , sn) > (dn−k, . . . , dn). This contradicts the induction hypothesis. �

Theorem 3. A degree sequence of ψ̂m(n) has rank rmin if and only if it belongs to d(Hrmin).

Proof. The initial sequence of lexicographic ordering of En is known as a unique (up to isomorphism) solution for a
number of well known problems, such as edge and vertex isoperimetry, optimal assignment of numbers to vertices, and
maximum/minimum weight ideal in the partial order of En (see e.g., [5]). In terms of degree sequences the result can be
expressed as: a degree sequence ofψM1

m (n) has rank rmin if and only if it belongs to d(Hrmin). On the other hand, by Theorem2,
d(Hrmin) ⊆ ψ̂m(n), which completes the proof. �

The structure of hypergraphs of Hrmin, given in Fig. 3, helps to easily calculate rmin, as well as components of degree
sequences.

rmin =

n
i=1

di =

p
i=1


n − ki − (i − 1)


· 2ki + ki · 2ki−1


.
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di =

 j−1
l=1

2kl−1


+ 2kj , for i = kj + 1, j = 1, . . . , p,

di =

 j
l=1

2kl−1


+

 p
l=j+1

2kl


, for kj+1 + 2 ≤ i ≤ kj, j = 1, . . . , p − 1,

di =

p
l=1

2kl−1
= m/2, for 1 ≤ i ≤ kp,

di =

p
l=1

2kl = m, for k1 + 2 ≤ i ≤ n.

2.3. Upper elements with highest rank

Letm is represented in canonical form:m = Cn
n + Cn−1

n + · · · + Cn−k
n + δ, δ ≤ Cn−k−1

n .
Define a specific class of hypergraphs on the vertex set [n]. Take all vertices of n-th, (n−1)-th, . . . , (n− k)-th levels and

δ vertices from (n − k − 1)-th level of En—as edges of hypergraphs. The choice of δ vertices in level (n − k − 1) is arbitrary.
Obviously,weobtainHrmax, the class of all hypergraphswith thehighest rank rmax, and rmax =

k
i=0(n−i)·Cn−i

n +(n−k−1)·δ.
For each H ∈ Hrmax, each degree di can be represented as: di =

k
j=0 C

n−j−1
n−1 + si, where the first summand is constant,

and si comes from δ elements. Separate the sequence (s1, . . . , sn). This represents the degree sequence of (n−k−1)-uniform
hypergraph on [n] with edges determined by these δ vertices of En.

Thus, the question of characterisation of degree sequences of Hrmax is equivalent to the characterisation of degree
sequences of simple uniform hypergraphs. This problem is open even for 3-uniform hypergraphs [2,3,6].

Before formulation of the next theorem we present a lemma for which an analogue in terms of the unit cube is proved
in [7].

Lemma 2. Let m = Cn
n + Cn−1

n + · · · + Cn−k
n + δ. There exists a hypergraph in Hrmax such that for all i either di =k

j=0 C
n−j−1
n−1 + ⌊

(n−k−1)·δ
n ⌋ or di =

k
j=0 C

n−j−1
n−1 + ⌊

(n−k−1)·δ
n ⌋ + 1.

Lemma 2 implies that
k

j=0 C
n−j−1
n−1 + ⌊

(n−k−1)·δ
n ⌋ is the greatest degree that can have regular hypergraphs. Applying now

Theorem 1 we obtain the following necessary and sufficient condition for the regular hypergraph degree sequences.

Theorem 4. There exists simple s-regular hypergraph on [n] with m edges if and only if m −
k

j=0 C
n−j−1
n−1 + ⌊

(n−k−1)·δ
n ⌋


≤

s ≤
k

j=0 C
n−j−1
n−1 + ⌊

(n−k−1)·δ
n ⌋.

3. Generating ψm(n) using the upper steepest elements

In this sectionwe introduce another resource from [3], steepest degree sequences for constructing all elements ofψm(n).

Definition 2 ([3]). Let d and d′ be finite decreasing sequences of nonnegative integers. d′ is an elementary flattening of d if
and only if d′ can be obtained from d by
1. finding i, j such that di ≥ dj + 2 and then,
2. transferring 1 from di to dj, d′

i = di − 1 and d′

j = dj + 1, and
3. re-ordering the resulting sequence such that it is decreasing.

Definition 3 ([3]). Let d and d′ be finite decreasing sequences of nonnegative integers. d′ is flatter than d and d is steeper
than d′ if and only if d′ can be obtained from d by a non-empty sequence of elementary flattenings.

Now, we formulate a theorem for which an analogue for uniform hypergraphs is proved in [3].

Theorem 5. If d belongs to ψm(n), then all d′ flatter than d also belong to ψm(n).
Proof. Let d = (d1, . . . , dn) ∈ ψm(n) and E be a set in En for which d is the associated vector of partitions. Suppose that d′

is flatter than d. Without loss of generality, we can assume that d′ is an elementary flattening of d. Then, there exist i, j such
that di ≥ dj + 2 and d′

= (d1, . . . , di − 1, . . . , dj + 1, . . . , dn). Now, split En according to two variables xi and xj: En−2
xi=1,xj=1,

En−2
xi=1,xj=0, E

n−2
xi=0,xj=1, and En−2

xi=0,xj=0 denote the parts of E in En−2
xi=1,xj=1, E

n−2
xi=1,xj=0, E

n−2
xi=0,xj=1, and En−2

xi=0,xj=0, respectively. Then,

|En−2
xi=1,xj=1| + |En−2

xi=1,xj=0| = di and |En−2
xi=1,xj=1| + |En−2

xi=0,xj=1| = dj; hence, |En−2
xi=1,xj=0| − |En−2

xi=0,xj=1| ≥ 2. Thus, we can move

one vertex from En−2
xi=1,xj=0 to En−2

xi=0,xj=1. This operation will provide the necessary di − 1 and dj + 1 values. A geometrical
visualisation is provided in Fig. 4. �

Definition 4 ([3]). d ∈ ψm(n) is a steepest degree sequence for ψm(n) if and only if all d′ steeper than d do not belong to
ψm(n).
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Fig. 4. Splitting of the cube and replacement of vertices.

It follows from Theorem 5 that the steepest sequences of ψm(n) on each level of Ξ n
m+1 determine all sequences of ψm(n)

in that level. Thus, the process of generating the sequences of ψm(n) using the steepest elements proceeds level by level of
Ξ n

m+1, whereas the generation ofψm(n) using the upper elements proceeds through subposets ofΞ n
m+1. Even for 3-uniform

hypergraphs, the number of steepest degree sequences is exponential [3]. The number of upper sequences is unknown, but
if we retrieve these sequences from ψ

M1
m (n), then we must consider all monotone Boolean functions that have m values 1.

We prove by Theorem 6 thatψm(n) can be determined by the intersection of two sets: the set of its upper elements and the
set of its steepest elements. This result decreases the size of the generating set for ψm(n).

First, we observe that the set of all steepest degree sequences ofψm(n) can contain both upper sequences and non-upper
sequences. Similarly, ψ̂m(n) contains both steepest and non-steepest sequences. Let ψ̂ S

m(n) denote the set of upper steepest
elements of ψm(n). We illustrate these sets for the following example: n = 5 and m = 14. One method of composing
ψ̂14(5) is to construct all monotone Boolean functions in E5 with 14 values equal to 1, compose ψM1

14 (5), and then remove
all non-upper sequences. We devised and programmed a recursive algorithm for generating monotone Boolean functions
and composed ψM1

14 (5) (only the decreasing sequences of ψM1

14 (5) are presented):

ψM1

14 (5) = {(14, 8, 8, 8, 7), (13, 9, 9, 8, 8), (12, 10, 10, 8, 7), (12, 10, 9, 9, 8), (12, 10, 9, 8, 8),
(12, 9, 9, 9, 9), (11, 11, 10, 8, 8), (11, 11, 9, 9, 8), (11, 10, 10, 9, 9),
(11, 10, 10, 9, 8), (11, 10, 9, 9, 9), (10, 10, 10, 10, 9), (10, 10, 10, 10, 7)}.

ψ̂14(5) = {(14, 8, 8, 8, 7), (13, 9, 9, 8, 8), (12, 10, 10, 8, 7), (12, 10, 9, 9, 8), (12, 9, 9, 9, 9),
(11, 11, 10, 8, 8), (11, 11, 9, 9, 8), (11, 10, 10, 9, 9), (10, 10, 10, 10, 9)}.

ψ̂ S
14(5) = {(14, 8, 8, 8, 7), (13, 9, 9, 8, 8), (12, 10, 10, 8, 7), (12, 10, 9, 9, 8), (11, 11, 10, 8, 8), (11, 10, 10, 9, 9)}.

Theorem 6. If d is an upper degree sequence of ψm(n), then all d′ from ψm(n) that are steeper than d are also upper degree
sequences.

Proof. Let d = (d1, . . . , dn) be an upper degree sequence of ψm(n). Without loss of generality, we can assume that d is a
decreasing sequence. Assume that d′

= (d′

1, . . . , d
′
n) ∈ ψm(n) is steeper than d. Then, d can be obtained from d′ by a non-

empty sequence of elementary flattenings. Without loss of generality, we can assume that d is an elementary flattening of
d′. Then, there exist i, j (i > j) such that d′

i = di+1 and d′

j = dj−1, where the other components are the same as for d. i, j can
be chosen such that d′ is also a decreasing sequence. Now, we prove that d′

∈ ψ̂m(n). For a proof by contradiction, assume
that this is not the case. It follows that there exists an index k, 1 ≤ k ≤ n, such that (d′

1, . . . , d
′

k + 1, . . . , d′
n) ∈ ψm(n).

Consider the following cases:

1. k ≠ j
Flattening the sequence through the pair (di +1, dj −1)will lead to (d1, . . . , dk +1, . . . , dn), which belongs toψm(n)

by Theorem 5. However, this is greater than d, which is a contradiction.
2. k = j

(d1, . . . , di + 1, . . . , dj, . . . , dn) ∈ ψm(n)—this is a contradiction. �
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Fig. 5. Composition by the initial segments of the reverse lexicographic ordering.

Theorem 6 implies that if some level of Ξ n
m+1 contains more than one element of ψ̂m(n), then it is sufficient to find the

steepest sequences only; if among the steepest sequences of ψm(n), there are both upper and non-upper elements, then
only the upper sequences must be considered.

4. New classes of upper steepest degree sequences

In this section, we consider the issue of generating new classes of upper steepest degree sequences, where we construct
them from the known classes of dimension n − 1.

Consider Hrmin, the class of simple hypergraphs with rank rmin. By Theorem 2, d(Hrmin) ⊆ ψ̂m(n). On the other hand, by
Property P5, d(Hrmin) is a class of steepest sequences. Thus, we obtain an example class from ψ̂ S

m(n).
Consider an arbitrary integer partition of m: m = m1 + m2, with the only restriction that 2n−1

≥ m1 ≥ m2. We split
En according to the value of some xi (let it be x1) and consider Rm1(n − 1) and Rm2(n − 1), the initial m1 and m2 reverse
lexicographic sequences in En−1

x1=1 and En−1
x1=0.

Theorem 7. Let (d′

2, . . . , d
′
n) and (d

′′

2, . . . , s
′′

d) be degree sequences of hypergraphs on [n − 1] whose edges are represented by
Rm1(n − 1) and Rm2(n − 1), respectively. Let E denote their union in En. Then, (d1, . . . , dn) = (m1, d′

2 + d′′

2, . . . , d
′
n + d′′

n), the
degree sequence of the hypergraph on [n] whose edges are represented by E , belongs to ψ̂m(n).

Proof. It is easy to check that E is the set ofm values 1 for some monotone Boolean function. A geometrical visualisation is
given in Fig. 5.

By Property P5, (d′

2, . . . , d
′
n) and (d

′′

2, . . . , d
′′
n) are steepest sequences, and by Theorem 3, they belong to ψ̂m1(n − 1) and

ψ̂m2(n − 1), respectively. Now we prove that (d1, . . . , dn) ∈ ψ̂m(n). Suppose for the purpose of proof by contradiction that
(d̃1, . . . , d̃n) > (d1, . . . , dn), where (d̃1, . . . , d̃n) is the degree sequence of some simple hypergraph on [n]. Let Ẽ ⊆ En

(|Ẽ | = m) represent the set of edges of this hypergraph. Split En according to the value of x1. Ẽ will be partitioned into d̃1
and (m − d̃1)-sets in En−1

x1=1 and En−1
x1=0, respectively. These sets can be considered as edges of some hypergraphs on [n − 1],

and let (d̃′

2, . . . , d̃
′
n) and (d̃

′′

2, . . . , d̃
′′
n) denote the corresponding degree sequences. Consider the following cases:

(1) d̃1 = d1.
Let d̃2 = d2, . . . , d̃i−1 = di−1, where i is the first index for which d̃i > di. Then, d̃′

j = d′

j and d̃′′

j = d′′

j for all j < i;
otherwise d̃′

j > d′

j would imply that (d̃′

2, . . . , d̃
′
n) ∉ ψm1(n−1) and d̃′′

j > d′′

j would imply that (d̃′′

2, . . . , d̃
′′
n) ∉ ψm2(n−1)

(by Property P5). d̃i > di implies that either d̃′

i > d′

i or d̃
′′

i > d′′

i which leads to the contradiction.
(2) d̃1 > d1.

We move d̃1 − d1 vertices of Ẽ from En−1
x1=1 to En−1

x1=0. This is possible because there are d̃1 − (m − d̃1) extra vertices in
En−1
x1=1. This operation does not change the sizes of the partitions in any other direction. Now, by the same reasoning as

in the previous case, we obtain (d̃′

2, . . . , d̃
′
n) = (d′

2, . . . , d
′
n) and (d̃

′′

2, . . . , d̃
′′
n) = (d′′

2, . . . , d
′′
n). According to Theorem 3,

(d̃′

2, . . . , d̃
′
n) and (d̃

′′

2, . . . , d̃
′′
n) are degree sequences of the initial reverse lexicographic sequences in En−1

x1=1 and En−1
x1=0. This

is a contradiction. �
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Theorem 8. Let (d′

2, . . . , d
′
n) and (d

′′

2, . . . , d
′′
n) be degree sequences of hypergraphs on [n − 1] whose edges are represented by

Rm1(n − 1) and Rm2(n − 1), respectively. Let E denote their union in En. Then, (d1, . . . , dn) = (m1, d′

2 + d′′

2, . . . , d
′
n + d′′

n), the
degree sequence of the hypergraph on [n] whose edges are represented by E , is a steepest sequence.

Proof. We observe that (d′

2, . . . , d
′
n) and (d′′

2, . . . , d
′′
n) are steepest sequences (by Property P5), and therefore it is not

possible to make (m1 = d1, d2, . . . , dn) steeper within the set of coordinates d2, . . . , dn. Now, we prove that it is not
possible tomake the sequence steeper by using pairs (d1, di). We split En according to the values of x1 and xi simultaneously:
Ex1=1,xi=1, Ex1=1,xi=0, Ex1=0,xi=1, and Ex1=0,xi=0 are parts of E in En−2

x1=1,xi=1, E
n−2
x1=1,xi=0, E

n−2
x1=0,xi=1, and En−2

x1=0,xi=0, respectively.
Then, |Ex1=1,xi=1| + |Ex1=1,xi=0| = d1 and |Ex1=1,xi=1| + |Ex1=0,xi=1| = di.

First, we observe that if m1 ≤ 2n−2, then Ex1=1,xi=0 is empty. If m1 > 2n−2, then Ex1=1,xi=1 coincides with En−2
x1=1,xi=1 and

Ex1=0,xi=1 is the initial (m1−2n−2)-reverse lexicographic sequence in En−2
x1=1,xi=0 (by Property P4). Similarly, ifm2 ≤ 2n−2, then

Ex0=1,xi=0 is empty. If m2 > 2n−2, then Ex0=1,xi=1 coincides with En−2
x0=1,xi=1 and Ex1=0,xi=0 is the initial (m2 − 2n−2)-reverse

lexicographic sequence in En−2
x1=0,xi=0 (by Property P4). Consider the following cases:

(1) d1 < di. It follows that |Ex1=1,xi=0| < |Ex1=0,xi=1|. To make the sequence steeper through the pair (d1, di), we must
increase di and decrease d1. This can be performed by moving a vertex from Ex1=1,xi=0 to Ex1=0,xi=1. This is not possible
because either Ex1=1,xi=0 is empty or both Ex1=1,xi=0 and Ex1=0,xi=1 are initial reverse lexicographic sequences, and
|Ex1=1,xi=0| < |Ex1=0,xi=1|.

(2) d1 > di. It follows that |Ex1=1,xi=0| > |Ex1=0,xi=1|. To make the sequence steeper, we must increase d1 and decrease di.
This can be performed by moving a vertex from Ex1=0,xi=1 to Ex1=1,xi=0. This is not possible by the same reasoning. �

If we apply the above theorems to each feasible pair (m1,m2), we obtain the following theorem.

Theorem 9. For any m̃, ]m/2[≤ m̃ ≤ m there exists an upper steepest degree sequence in ψ̂ S
m(n) that has a component equal

to m̃.

Thus, we have generated a new class of upper steepest degree sequences. The components of degree sequences are also
defined.

We conclude by considering an example that illustrates the results. Consider again the example from Section 3: n =

5,m = 14. We compose all feasible pairs of sets in E4
x1=1 and E4

x1=0 and apply the constructions of the above theorems.
Consider all integer partitions of 14.

(1) m1 = 13 and m2 = 1.

d′
= (8, 8, 7, 7), d′′

= (1, 1, 1, 1) and d = (13, 9, 9, 8, 8).

(2) m1 = 12 and m2 = 2.

d′
= (8, 8, 6, 6), d′′

= (2, 2, 2, 1), and d = (12, 10, 10, 8, 7).

(3) m1 = 11 and m2 = 3.

d′
= (8, 7, 6, 6), d′′

= (3, 3, 2, 2), and d = (11, 11, 10, 8, 8).

(4) m1 = 10 andm2 = 4.

d′
= (8, 6, 6, 5), d′′

= (4, 4, 2, 2), and d = (10, 12, 10, 8, 7).

(5) m1 = 9 andm2 = 5.

d′
= (8, 5, 5, 5), d′′

= (5, 4, 3, 3), and d = (9, 13, 9, 8, 8).

(6) m1 = 8 andm2 = 6.

d′
= (8, 4, 4, 4), d′′

= (6, 4, 4, 3), and d = (8, 14, 8, 8, 7).

(7) m1 = 7 andm2 = 7.

d′
= (7, 4, 4, 4), d′′

= (7, 4, 4, 4), and d = (7, 14, 8, 8, 8).

Thus, we get the following class of upper steepest degree sequences (presented in decreasing order):

{(14, 8, 8, 8, 7), (13, 9, 9, 8, 8), (12, 10, 10, 8, 7), (11, 11, 10, 8, 8)}.

While ψ̂ S
14(5) = {(14, 8, 8, 8, 7), (13, 9, 9, 8, 8), (12, 10, 10, 8, 7), (12, 10, 9, 9, 8), (11, 11, 10, 8, 8), (11, 10, 10,

9, 9)}.
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