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a b s t r a c t

An edge-coloring of a graph G with consecutive integers c1, . . . , ct is called an interval
t-coloring if all colors are used, and the colors of edges incident to any vertex of G are
distinct and form an interval of integers. A graph G is interval colorable if it has an interval
t-coloring for some positive integer t . The set of all interval colorable graphs is denoted
by N. In 2004, Giaro and Kubale showed that if G,H ∈ N, then the Cartesian product of
these graphs belongs to N. In the same year they formulated a similar problem for the
composition of graphs as an open problem. Later, in 2009, the second author showed that
if G,H ∈ N and H is a regular graph, then G[H] ∈ N. In this paper, we prove that if G ∈ N

and H has an interval coloring of a special type, then G[H] ∈ N. Moreover, we show that all
regular graphs, complete bipartite graphs and trees have such a special interval coloring.
In particular, this implies that if G ∈ N and T is a tree, then G[T ] ∈ N.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite, undirected, and have no loops or multiple edges. Let V (G) and E(G) denote
the sets of vertices and edges of G, respectively. For a graph G, by G we denote the complement of the graph G. The degree
of a vertex v ∈ V (G) is denoted by dG(v), the maximum degree of G by ∆(G), and the chromatic index of G by χ ′(G). The
terms and concepts that we do not define can be found in [1,8,20,34].

A proper edge-coloring of a graph G is a coloring of the edges of G such that no two adjacent edges receive the same color.
A proper edge-coloring of a graph G with consecutive integers c1, . . . , ct is an interval t-coloring if all colors are used, and
the colors of edges incident to each vertex of G form an interval of integers. A graph G is interval colorable if it has an interval
t-coloring for some positive integer t . The set of all interval colorable graphs is denoted by N. The concept of interval edge-
coloring of graphswas introducedbyAsratian andKamalian [2] in 1987. In [2], they proved that ifG ∈ N, thenχ ′ (G) = ∆(G).
Asratian and Kamalian also proved [2,3] that if a triangle-free graph G admits an interval t-coloring, then t ≤ |V (G)| − 1.
In [16,17], Kamalian investigated interval colorings of complete bipartite graphs and trees. In particular, he proved that
the complete bipartite graph Km,n has an interval t-coloring if and only if m + n − gcd(m, n) ≤ t ≤ m + n − 1, where
gcd(m, n) is the greatest common divisor of m and n. In [24], Petrosyan investigated interval colorings of complete graphs
and hypercubes. In particular, he proved that if n ≤ t ≤

n(n+1)
2 , then the hypercube Qn has an interval t-coloring. Later,

in [27], it was shown that the hypercube Qn has an interval t-coloring if and only if n ≤ t ≤
n(n+1)

2 . In [31], Sevast’janov
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proved that it is an NP-complete problem to decide whether a bipartite graph has an interval coloring or not. In papers
[2,3,6,7,9,16,17,20,24,26–28,31], the problems of the existence, construction and estimating of the numerical parameters of
interval colorings of graphs were investigated. Surveys on this topic can be found in some books [1,15,20].

Graph products [8] were first introduced by Berge [5], Sabidussi [30], Harary [10] and Vizing [32]. In particular,
Sabidussi [30] and Vizing [32] showed that every connected graph has a unique decomposition into prime factors with
respect to the Cartesian product. In the same direction there are also many interesting problems of decomposing of the
different products of graphs into Hamiltonian cycles. In particular, in [4] it was proved Bermond’s conjecture that states: if
two graphs are decomposable into Hamiltonian cycles, then their composition is decomposable, too. A lot of work was done
on various topics related to graph products, on the other hand there are still many questions open. For example, it is still
open Hedetniemi’s conjecture [12], Vizing’s conjecture [33] and the conjecture of Harary, Kainen and Schwenk [11].

There are many papers [13,14,19,21–23,29,35] devoted to proper edge-colorings of various products of graphs, however
very little is known on interval colorings of graph products. Interval colorings of Cartesian products of graphs were first
investigated by Giaro and Kubale [6]. In [7], Giaro and Kubale proved that if G,H ∈ N, then G�H ∈ N. In 2004, they
formulated [20] a similar problem for the composition of graphs as an open problem. In 2009, the second author [25] showed
that if G,H ∈ N and H is a regular graph, then G[H] ∈ N. Later, Yepremyan [28] proved that if G is a tree and H is either a
path or a star, then G[H] ∈ N. Some other results on interval colorings of various products of graphs were obtained in [20,
25–28].

In this paper, we prove that if G ∈ N and H has an interval coloring of a special type, then G[H] ∈ N. Moreover, we show
that all regular graphs, complete bipartite graphs and trees have such a special interval coloring. In particular, this implies
that if G ∈ N and T is a tree, then G[T ] ∈ N.

2. Notations, definitions and auxiliary results

We use standard notations Cn and Kn for the simple cycle and complete graph on n vertices, respectively. We also use
standard notations Km,n and Km,n,l for the complete bipartite and tripartite graphs, respectively, one part of which has m
vertices, the other part has n vertices and the third part has l vertices.

For two positive integers a and bwith a ≤ b, we denote by [a, b] the interval of integers {a, . . . , b}.
Let L = (l1, . . . , lk) be an ordered sequence of nonnegative integers. The smallest and largest elements of L are denoted

by L and L, respectively. The length (the number of elements) of L is denoted by |L|. By L(i), we denote the ith element of L
(1 ≤ i ≤ k). An ordered sequence L = (l1, . . . , lk) is called a continuous sequence if it contains all integers between L and L.
If L = (l1, . . . , lk) is an ordered sequence and p is nonnegative integer, then the sequence (l1 + p, . . . , lk + p) is denoted by
L ⊕ p. Clearly, (L ⊕ p)(i) = L(i) + p for any p ∈ Z+.

Let G and H be two graphs. The composition (lexicographic product) G[H] of graphs G and H is defined as follows:

V (G[H]) = V (G) × V (H),

E(G[H]) = {(u1, v1)(u2, v2): u1u2 ∈ E(G) ∨ (u1 = u2 ∧ v1v2 ∈ E(H))} .

A partial edge-coloring of G is a coloring of some of the edges of G such that no two adjacent edges receive the same color. If
α is a proper edge-coloring of G and v ∈ V (G), then S (v, α) (spectrum of a vertex v) denotes the set of all colors appearing
on edges incident to v. The smallest and largest colors of S (v, α) are denoted by S (v, α) and S (v, α), respectively. A proper
edge-coloring α of G with consecutive integers c1, . . . , ct is called an interval t-coloring if all colors are used, and for any
v ∈ V (G), the set S (v, α) is an interval of integers. A graph G is interval colorable if it has an interval t-coloring for some
positive integer t . The set of all interval colorable graphs is denoted by N. For a graph G ∈ N, the smallest and the largest
values of t for which it has an interval t-coloring are denoted by w(G) andW (G), respectively.

In [2,3], Asratian and Kamalian obtained the following result.

Theorem 1. If G ∈ N, then χ ′(G) = ∆(G). Moreover, if G is a regular graph, then G ∈ N if and only if χ ′(G) = ∆(G).

In [16], Kamalian proved the following result on complete bipartite graphs.

Theorem 2. For any m, n ∈ N, the complete bipartite graph Km,n is interval colorable, and

(1) w

Km,n


= m + n − gcd(m, n),

(2) W

Km,n


= m + n − 1,

(3) if w

Km,n


≤ t ≤ W


Km,n


, then Km,n has an interval t-coloring.

In [18], König proved the following result on bipartite graphs.

Theorem 3. If G is a bipartite graph, then χ ′(G) = ∆(G).
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Fig. 1. The graph Gwith its coloring α and with LSE(V (G), α) = (1, 1, 2, 2, 4), USE(V (G), α) = (2, 2, 3, 4, 4).

Let α be a proper edge-coloring of G and V ′
= {v1, . . . , vk} ⊆ V (G). We define two ordered sequences LSE(V ′, α) (Lower

Spectral Edge) and USE(V ′, α) (Upper Spectral Edge) as follows:

LSE(V ′, α) =

S

vi1 , α


, S


vi2 , α


, . . . , S


vik , α


,

where S

vil , α


≤ S


vil+1 , α


for 1 ≤ l ≤ k − 1, and

USE(V ′, α) =

S

vj1 , α


, S


vj2 , α


, . . . , S


vjk , α


,

where S

vjl , α


≤ S


vjl+1 , α


for 1 ≤ l ≤ k − 1.

For example, if we consider the graph G with its coloring α shown in Fig. 1, then LSE(V (G), α) = (1, 1, 2, 2, 4) and
USE(V (G), α) = (2, 2, 3, 4, 4). Moreover, the sequence (1, 1, 2, 2, 4) is not continuous, but the sequence (2, 2, 3, 4, 4) is
continuous.

Recall that for ordered sequences LSE(V ′, α) and USE(V ′, α), the number of elements in LSE(V ′, α) and USE(V ′, α) is
denoted by |LSE(V ′, α)| and |USE(V ′, α)|, respectively. Clearly, |LSE(V (G), α)| = |USE(V (G), α)| = |V (G)|.

We also need the following lemma.

Lemma 4. If Kn,n is a complete bipartite graph with bipartition (U, V ), then for any continuous sequence L with length n, Kn,n
has an interval coloring α such that

LSE(U, α) = LSE(V , α) = L.

Proof. Let Kn,n be a complete bipartite graph with bipartition (U, V ), where U = {u1, . . . , un} and V = {v1, . . . , vn}. Also,

let L =

l1, . . . , l1  
n1

, l2, . . . , l2  
n2

, . . . , lk, . . . , lk  
nk

 be a continuous sequence with length n
k

i=1 ni = n

. Clearly, li+1 = li + 1

for 1 ≤ l ≤ k − 1.
First we define a partial edge-coloring α of Kn,n as follows:

(1) for 1 ≤ i ≤ k − 1 and p + q = 1 +
i

j=1 nj, let α

upvq


= li;

(2) for 1 ≤ i ≤ k − 1 and p + q = n + 1 +
i

j=1 nj, let α

upvq


= li + n,

where p, q ∈ [1, n].
Define a subgraph G of Kn,n as follows:

V (G) = V (Kn,n) and E(G) =

e: e ∈ E(Kn,n) ∧ α(e) ∈ [l1, lk−1] ∪ [l1 + n, lk−1 + n]


.

By the definition of α, G is a spanning (k − 1)-regular bipartite subgraph of Kn,n. Next we define a subgraph G′ of Kn,n as
follows:

V (G) = V (Kn,n) and E

G′


= E


Kn,n


\ E(G).

Clearly, G′ is a spanning (n − k + 1)-regular bipartite subgraph of Kn,n. By Theorem 3, χ ′

G′


= ∆


G′


= n − k + 1. Let

β be a proper edge-coloring of G′ with colors lk, lk + 1, . . . , lk + n − k. By the definition of β , for each vertex v ∈ V (Kn,n),
S(v, β) = [lk, lk + n − k].

Now we are able to define an edge-coloring γ of Kn,n.
For every e ∈ E(Kn,n), let

γ (e) =


α(e), if e ∈ E(G),

β(e), if e ∈ E

G′


.

Let us prove that γ is an interval (lk + n − 1)-coloring of Kn,n such that S(ui, γ ) = S(vi, γ ) and S(ui, γ ) = S(vi, γ ) = li
for 1 ≤ i ≤ n.
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Fig. 2. The interval coloring γ of K5,5 with LSE(U, γ ) = LSE(V , γ ) = (2, 2, 3, 4, 4) that is described in the proof of Lemma 4.

By the definition of γ , for 1 ≤ i ≤ n, we have

S(ui, γ ) = S(vi, γ ) = [l1, l1 + n − 1] if i ∈ [1, n1] ,
S(ui, γ ) = S(vi, γ ) = [l2, l2 + n − 1] if i ∈ [n1 + 1, n1 + n2] ,
. . .

S(ui, γ ) = S(vi, γ ) = [lk, lk + n − 1] if i ∈


k−1
j=1

nj + 1,
k

j=1

nj


.

This implies that γ is an interval (lk + n − 1)-coloring of Kn,n and LSE(U, γ ) = LSE(V , γ ) = L (see Fig. 2). �

3. The main result

Here, we prove ourmain result which states that if G ∈ N andH has an interval coloring of a special type, then G[H] ∈ N.

Theorem 5. If G ∈ N and H has an interval coloring αH such that USE(V (H), αH) is continuous, then G[H] ∈ N. Moreover, if
|V (H)| = n and L = USE(V (H), αH), then

w (G[H]) ≤ w(G) · n + L and W (G[H]) ≥ W (G) · n + L.

Proof. Let V (G) = {u1, . . . , um}, V (H) = {w1, . . . , wn} and

V (G[H]) =


v

(i)
j : 1 ≤ i ≤ m, 1 ≤ j ≤ n


and

E(G[H]) =

v(i)
p v(j)

q : uiuj ∈ E(G), 1 ≤ p ≤ n, 1 ≤ q ≤ n


∪

m
i=1

E i,

where E i
=


v

(i)
p v

(i)
q : wpwq ∈ E(H)


.

Let αG be an interval t-coloring of G and L be a continuous sequence with length n such that L = USE(V (H), αH).
Without loss of generality we may assume that vertices of H are numbered so that S (wi, αH) = L(i) for 1 ≤ i ≤ n. Let
us consider the graph K2


K |V (H)|


. Clearly, K2


K |V (H)|


is isomorphic to Kn,n. Let V


K2


K |V (H)|


= {x1, . . . , xn, y1, . . . , yn}

and E

K2


K |V (H)|


=


xiyj: 1 ≤ i ≤ n, 1 ≤ j ≤ n


. Since L is a continuous sequence, L ⊕ 1 is a continuous sequence, too.

By Lemma 4, K2

K |V (H)|


has an interval coloring β such that S (xi, β) = S (yi, β) = L(i) + 1 for 1 ≤ i ≤ n.

Now we are able to define an edge-coloring αG[H] of G[H].

1) For 1 ≤ i ≤ m and v
(i)
p v

(i)
q ∈ E i (1 ≤ p ≤ n, 1 ≤ q ≤ n), let

αG[H]


v(i)
p v(i)

q


=


S (ui, αG) − 1


n + αH


wpwq


.

2) For 1 ≤ i < j ≤ m and v
(i)
p v

(j)
q ∈ E(G[H]) (1 ≤ p ≤ n, 1 ≤ q ≤ n), let

αG[H]


v(i)
p v(j)

q


=


αG


uiuj


− 1


n + β


xpyq


.
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Fig. 3. The interval 14-coloring αP3[H] of P3[H] that is described in the proof of Theorem 5.

It is not difficult to see that αG[H] is a proper edge-coloring of G[H]. Let us prove that αG[H] is an interval (t ·n+L)-coloring
of G[H]. For the proof, it suffices to show that for 1 ≤ i ≤ m and 1 ≤ j ≤ n,

S

v

(i)
j , αG[H]


− S


v

(i)
j , αG[H]


= dG[H]


v

(i)
j


− 1.

By the definition of αG[H], for 1 ≤ i ≤ m and 1 ≤ j ≤ n, we have

S

v

(i)
j , αG[H]


=


S (ui, αG) − 1


n + L(j) + 1 + n − 1 = S (ui, αG) · n + L(j).

By the definition of αG[H] and taking into account that L(j) − S

wj, αH


= dH


wj


− 1 (1 ≤ j ≤ n), for 1 ≤ i ≤ m and

1 ≤ j ≤ n, we have

S

v

(i)
j , αG[H]


=


S (ui, αG) − 1


n + L(j) − dH


wj


+ 1.

Now, taking into account that S (ui, αG) − S (ui, αG) = dG(ui) − 1 (1 ≤ i ≤ m), for 1 ≤ i ≤ m and 1 ≤ j ≤ n, we obtain

S

v

(i)
j , αG[H]


− S


v

(i)
j , αG[H]


=


S (ui, αG) − S (ui, αG) + 1


n + dH


wj


− 1

= dG (ui) · n + dH

wj


− 1 = dG[H]


v

(i)
j


− 1.

This shows that αG[H] is an interval (t ·n+L)-coloring of G[H]. Thus,w (G[H]) ≤ w(G) ·n+L andW (G[H]) ≥ W (G) ·n+L
(see Fig. 3). �

Corollary 6. If G,H ∈ N and H is an r-regular graph, then G[H] ∈ N. Moreover, if |V (H)| = n, then

w(G[H]) ≤ w(G) · n + r and W (G[H]) ≥ W (G) · n + r.

Proof. Since H ∈ N and H is an r-regular graph, by Theorem 1, χ ′(H) = ∆(H) = r . This implies that H has a proper
edge-coloring αH with colors 1, . . . , r . Hence, for every v ∈ V (H), S (v, αH) = [1, r]. Clearly, αH is an interval r-coloring and
USE(V (H), αH) = (r, . . . , r) is continuous, so, by Theorem5,G[H] ∈ N.Moreover, if |V (H)| = n, thenw(G[H]) ≤ w(G)·n+r
andW (G[H]) ≥ W (G) · n + r . �

Corollary 7. Let n ∈ N. If G ∈ N, then G[K n] ∈ N and moreover we have w(G[K n]) ≤ w(G) · n and W (G[K n]) ≥ W (G) · n.

Proof. We may assume that K n has an interval coloring α such that USE(V (K n), α) = (0, . . . , 0). Since USE(V (K n), α) =

(0, . . . , 0) is continuous, by Theorem 5, G[K n] ∈ N. Moreover, w(G[K n]) ≤ w(G) · n and W (G[K n]) ≥ W (G) · n. �

4. Applications of the main result

This section is devoted to applications of the main result from the previous section for some classes of graphs. We first
consider complete bipartite graphs.
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Theorem 8. Let m, n ∈ N. If G ∈ N, then G[Km,n] ∈ N and moreover we have

w

G[Km,n]


≤ (w(G) + 1)(m + n) − 1 and W


G[Km,n]


≥ (W (G) + 1)(m + n) − 1.

Proof. Let (U, V ) be a bipartition of Km,n, where U = {u1, . . . , um} and V = {v1, . . . , vn}. Define an edge-coloring α of Km,n
as follows: for each edge uivj ∈ E(Km,n), let α(uivj) = i + j − 1, where 1 ≤ i ≤ m, 1 ≤ j ≤ n. Clearly, α is an interval
(m+n−1)-coloring of Km,n. Moreover, S(ui, α) = [i, i+n−1] for 1 ≤ i ≤ m and S(vj, α) = [j, j+m−1] for 1 ≤ j ≤ n. This
implies that USE(U, α) = (n, n + 1, . . . ,m + n − 1) and USE(V , α) = (m,m + 1, . . . ,m + n − 1). Since USE(V


Km,n


, α)

is the union of USE(U, α) and USE(V , α), we obtain USE(V

Km,n


, α) is a continuous sequence. By Theorem 5, G[Km,n] ∈ N.

Moreover, w(G[Km,n]) ≤ w(G) · (m + n) + m + n − 1 andW (G[Km,n]) ≥ W (G) · (m + n) + m + n − 1. �

Next, we consider complete graphs of even order. Here we need one result on interval colorings of complete graphs of
even order. In [24], it was proved the following result.

Theorem 9 ([24]). Let n ∈ N. Then K2n has an interval (3n − 2)-coloring α such that for each i ∈ [1, n], there are two different
vertices xi, yi ∈ V (K2n) such that S (xi, α) = S (yi, α) = i.

Now we are able to prove our result on complete graphs of even order.

Theorem 10. Let n ∈ N. If G ∈ N, then G[K2n] ∈ N and moreover we have

w (G[K2n]) ≤ (2 · w(G) + 2)n − 1 and W (G[K2n]) ≥ (2 · W (G) + 3)n − 2.

Proof. By Corollary 6, if G ∈ N, then G[K2n] ∈ N and w (G[K2n]) ≤ w(G) · 2n + 2n − 1.
Now we show that W (G[K2n]) ≥ (2 · W (G) + 3)n − 2. By Theorem 9, K2n has an interval (3n − 2)-coloring α such that

for each i ∈ [1, n], there are two different vertices xi, yi ∈ V (K2n) such that S (xi, α) = S (yi, α) = [i, i + 2n − 2]. This
implies that USE(V (K2n), α) = (2n−1, 2n−1, 2n, 2n, . . . , 3n−2, 3n−2), which is a continuous sequence. By Theorem 5,
G[K2n] ∈ N and W (G[K2n]) ≥ W (G) · 2n + 3n − 2. �

A similar result also can be obtained for even cycles.

Theorem 11. Let n ∈ N and n ≥ 2. If G ∈ N, then G[C2n] ∈ N and moreover we have

w (G[C2n]) ≤ 2(w(G) · n + 1) and W (G[C2n]) ≥ (2 · W (G) + 1)n + 1.

Proof. By Corollary 6, if G ∈ N, then G[C2n] ∈ N and w (G[C2n]) ≤ w(G) · 2n + 2.
Now we show that W (G[C2n]) ≥ (2 · W (G) + 1)n + 1. Let V (C2n) = {v1, . . . , v2n} and E(C2n) = {vivi+1: 1 ≤ i ≤

2n − 1} ∪ {v1v2n}. Define an edge-coloring α of C2n as follows: for 1 ≤ i ≤ n, let α(vivi+1) = α(v2n+1−iv2n−i) = i + 1 and
α(v1v2n) = 1. Clearly,α is an interval (n+1)-coloring ofC2n such that for each i ∈ [1, n], S (vi, α) = S (v2n+1−i, α) = [i, i+1].
This implies that USE(V (C2n), α) = (2, 2, 3, 3, . . . , n+1, n+1), which is a continuous sequence. By Theorem 5, G[C2n] ∈ N

and W (G[C2n]) ≥ W (G) · 2n + n + 1. �

Finally, we show that every tree T has an interval coloring α such that USE(V (T ), α) is continuous.

Theorem 12. If T is a tree, then it has an interval coloring α such that USE(V (T ), α) is continuous.

Proof. Let T be a tree with |V (T )| = n (n ≥ 2). We prove the theorem by induction on |E(T )|. We will construct tree T
starting from some v1v2 edge and adding a new leaf on each step. For 1 ≤ i ≤ n − 1, we denote by Ti the tree obtained on
step i and by αi its edge-coloring. For a tree Ti and its edge-coloring αi (1 ≤ i ≤ n − 1), define numbers ai and bi as follows:

ai = min
e∈E(Ti)

αi(e) and bi = max
e∈E(Ti)

αi(e).

We show that in each step Ti and αi satisfy the following two conditions:
(1) for each v ∈ V (Ti), S (v, αi) is an interval of integers;
(2) each color of the interval [ai, bi] appears in USE (V (Ti), αi).

Let V (T1) = {v1, v2} and E(T1) = {v1v2}. Define an edge-coloring α1 of T1 as follows: α1(v1v2) = |E(T )|. Since
S (v1, α1) = S (v2, α1) = {|E(T )|}, we have a1 = b1 = |E(T )| and USE (V (T1), α1) = (|E(T )|, |E(T )|). This implies that
(1) and (2) hold for T1. Suppose that n ≥ 3, (1) and (2) are satisfied for a tree Tm−1 and its edge-coloring αm−1, and prove
that (1) and (2) are also satisfied for a tree Tm and its edge-coloring αm (2 ≤ m ≤ n − 1). Let u be the pendant vertex that
should be added to Tm−1 to get Tm. Also, let uw ∈ E(Tm), where w ∈ V (Tm−1).

Define an edge-coloring αm of Tm as follows: for every e ∈ E(Tm), let

αm(e) =


αm−1(e), if e ∈ E(Tm−1),
S (w, αm−1) − 1, if e = uw.

By the definition of αm, we have:
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1) for each v ∈ V (Tm), S (v, αm) is an interval of integers;
2) for v ∈ V (Tm−1), S (v, αm) = S (v, αm−1) and USE (V (Tm), αm) is the union of USE (V (Tm−1), αm−1) and (αm(uw));
3) am = min{am−1, αm(uw)}, bm = bm−1 and αm(uw) = S (w, αm−1) − 1 ≥ am−1 − 1.

By 1), 2) and 3), and taking into account that each color of the interval [am−1, bm−1] appears in USE (V (Tm−1), αm−1),
we obtain that each color of the interval [am, bm] appears in USE (V (Tm), αm). This implies that (1) and (2) also hold for
Tm. So, taking m = n − 1, we get that T = Tn−1. Finally, define an edge-coloring α of T as follows: for every e ∈ E(T ),
let α(e) = αn−1(e) − an−1 + 1. It is not difficult to see that α is an interval (|E(T )| − an−1 + 1)-coloring of T such that
USE(V (T ), α) is continuous. �

Corollary 13. If G ∈ N and T is a tree, then G[T ] ∈ N.

5. Concluding remarks

In the previous sections it was proved that if G ∈ N and H has an interval coloring αH such that USE(V (H), αH) is
continuous, then G[H] ∈ N. Unfortunately, not all interval colorable graphs have such a special interval coloring. For
example, if we consider the complete tripartite graph K1,1,2n (n ≥ 2), then it is not difficult to see that for every interval
coloring α of K1,1,2n (n ≥ 2), USE(V (K1,1,2n), α) is not continuous. This implies that the problem on interval colorability of
the composition of interval colorable graphs still remains open.
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