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1. Introduction

We consider finite undirected graphs that do not contain loops or multiple edges. Let V(G) and E(G) denote sets of
vertices and edges of G, respectively. For S C V(G), let G[S] denote the subgraph of G induced by S, that is, V(G[S]) = S and
E(G[S]) consists of those edges of E(G) for which both ends are in S. The degree of a vertex v € V(G) is denoted by dg(v),
the maximum degree of G by A(G), the chromatic number of G by x (G), and the chromatic index of G by x’(G). The terms
and concepts that we do not define can be found in [2,26].

A proper vertex-coloring of a graph G is a mapping « : V(G) — N such that «(u) # o(v) for every uv € E(G). Ifa isa
proper vertex-coloring of a graph G, then X' (G, «) denotes the sum of the colors of the vertices of G. For a graph G, define the
vertex-chromatic sum X (G) as follows: X' (G) = min, X' (G, @), where minimum is taken among all possible proper vertex-
colorings of G. If « is a proper vertex-coloring of a graph G and X' (G) = X' (G, &), then « is called a sum vertex-coloring. The
strength of a graph G (s(G)) is the minimum number of colors needed for a sum vertex-coloring of G. The concept of sum
vertex-coloring and vertex-chromatic sum was introduced by Kubicka [16] and Supowit [22]. In [18], Kubicka and Schwenk
showed that the problem of finding the vertex-chromatic sum is NP-complete in general and polynomial time solvable for
trees. Jansen [12] gave a dynamic programming algorithm for partial k-trees. In papers [5,6,9,13,17], some approximation
algorithms were given for various classes of graphs. For the strength of graphs, Brook’s-type theorem was proved in [11]. On
the other hand, there are graphs with s(G) > x(G) [8]. Some bounds for the vertex-chromatic sum of a graph were given
in [23].

Similar to the sum vertex-coloring and vertex-chromatic sum of graphs, in [5,10,11], sum edge-coloring and edge-
chromatic sum of graphs were introduced. A proper edge-coloring of a graph G is a mapping « : E(G) — Nsuch thata(e) #
a(e’) for every pair of adjacent edges e, e’ € E(G). If @ is a proper edge-coloring of a graph G, then X'(G, @) denotes
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the sum of the colors of the edges of G. For a graph G, define the edge-chromatic sum X’(G) as follows: X'(G) =
min, X’(G, «), where minimum is taken among all possible proper edge-colorings of G. If « is a proper edge-coloring of
a graph G and X'(G) = X'(G, @), then « is called a sum edge-coloring. The edge-strength of a graph G (s'(G)) is the
minimum number of colors needed for a sum edge-coloring of G. For the edge-strength of graphs, Vizing’s-type theo-
rem was proved in [11]. In [5], Bar-Noy et al. proved that the problem of finding the edge-chromatic sum is NP-hard for
multigraphs. Later, in [10], it was shown that the problem is NP-complete for bipartite graphs with maximum degree 3.
Also, in [10], the authors proved that the problem can be solved in polynomial time for trees and that s'(G) = x’(G) for
bipartite graphs. In [20], Salavatipour proved that the problem of determining the edge-chromatic sum and the prob-
lem of determining the edge-strength are both NP-complete for r-regular graphs with r > 3. Also he proved that
s'(G) = x'(G) for regular graphs. On the other hand, there are graphs with x'(G) = A(G) and s'(G) = A(G) + 1[11].
Recently, Cardinal et al. [7] determined the edge- strength of the multicycles.

In the present paper we give a polynomial time 8 -approximation algorithm for the edge-chromatic sum problem of
r-regular graphs for r > 3. Next, we show that the problem of finding the edge-chromatic sum remains NP-complete even
for some restricted class of bipartite graphs with maximum degree 3. Finally, we give upper bounds for the edge-chromatic
sum of some split graphs.

2. Definitions and preliminary results

A proper t-coloring is a proper edge-coloring which makes use of t different colors. If « is a proper t-coloring of G and
v € V(G), then S (v, @) denotes the set of colors appearing on edges incident to v. Let G be a graph and R C V(G). A proper
t-coloring of a graph G is called an R-sequential t-coloring [1,3] if the edges incident to each vertex v € R are colored by the
colors 1, ..., dg(v). For positive integers a and b, we denote by [a, b], the set of all positive integers ¢ witha < ¢ < b. For a
positive integer n, let K, denote the complete graph on n vertices.

We will use the following four results.

Theorem 1 ([15]). If G is a bipartite graph, then x'(G) = A(G).
Theorem 2 ([24]). For every graph G,
A(G) < X'(6) = AG) + 1.

Theorem 3 ([25]). For the complete graph K, with n > 2,

, __Jn—1, ifniseven,
X (Kn) = {n, if nisodd.

Theorem 4 ([10,11]). If G is a bipartite or a regular graph, then s'(G) = x'(G).

We also need one result on the edge-chromatic sum of complete graphs with shifted colors. First we give a definition of
the shifted edge-chromatic sum. If « is a proper t-coloring of a graph G with colors [p, p 4+t — 1], then Z"zp (G, @) denotes
the sum of the colors of the edges of G. For a graph G and p € N, define the shifted edge-chromatic sum X’ ,(G) as follows:
XL (G) = min, X, (G «), where minimum is taken among all possible proper edge-colorings of G with colors p.p+1,.

The theorem we are going to prove will be used in Section 5.
Theorem 5. For any n, p € N, we have

—)@2p+n—1
nn=D@p =D e odd,

ZLo®n) = 1§ nn = 1)@p+n—2)

4

Proof. Since for any r-regular graph G with n vertices, X'(G) = M if and only if x'(G) = r and, by Theorems 3 and 4,
we obtain 2/ (Kn) — n(p+p+1+ -+p+n—2) __ n(n—1)2p+n—2)

, if niseven.

if nis even.
Now let n be an odd number andn > 3 In this case by Theorems 3 and 4, we have s'(K,;) = x’(K,) = n.It is easy to see
that in any proper n-coloring of K;, the missing colors at n vertices are all distinct. Hence,

n2@2p+n—1)  n@p+n—1)
- nn—1)2 n—1
LK) = —2 L e D&in- D

2 4

Corollary 6. For any n € N, we have

nmn?>—1
) 1 if nisodd,
2N(Ky) = (n— 1)112

if niseven.
4 9
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3. Edge-chromatic sums of regular graphs

In this section we consider the problem of finding the edge-chromatic sum of regular graphs. It is easy to show that the
edge-chromatic sum problem of graphs G with A(G) < 2 can be solved in polynomial time. On the other hand, in [19], it was
proved that the problem of finding the edge-chromatic sum of an r-regular (r > 3) graph is NP-complete. Clearly, X' (G) >
%ﬂ) for any r-regular graph G with n vertices, since the sum of colors appearing on the edges incident to any vertex is at
least @ Moreover, it is easy to see that X/(G) = w ifand only if x'(G) = r for any r-regular graph G with n vertices.

First we give a result on R-sequential colorings of regular graphs and then we use this result for constructing an approx-
imation algorithm.

Theorem 7. If G is an r-regular graph with n vertices, then G has an R-sequential (r + 1)-coloring with |R| > [HLJ

Proof. By Theorem 2, there exists a proper (r+1)-coloring « of the graph Gwith colors 1,2, ..., r+1.Fori =1, 2, ..., r+1,
define the set V, (i) as follows:
Vo) ={veV@G):igSh,a)}.
Clearly, foranyi’,i”,1 <i <i” <r+ 1, we have

r+1
Va()NVa(@) =0 and | JVa() = V(G).
i=1
Hence,
r+1

Uvad

i=1

r+1
= IVa(l.
i=1
This implies that there exists ig, 1 < ip < r 4 1, for which |V, (io)| = [ 5 |- Let R = V¢ (io).

Ifip = r + 1, then « is an R-sequential (r + 1)-coloring of G; otherwise define an edge-coloring 8 as follows: for any
e € E(G), let

a(e), ifale)#iy,r+1,
B(e) :

n=|V(G)| =

io, ifa(e) =r+1,
r+1, ifa(e) =ip.

It is easy to see that § is an R-sequential (r + 1)-coloring of G with |R| > ’Vr+l—|

Corollary 8. If G is a cubic graph with n vertices, then G has an R-sequential 4-coloring with |R| > H]

Note that if n is odd, then the lower bound in Theorem 7 cannot be improved, since the complete graph K, has an
R-sequential n-coloring with |R| = 1.

In[5],it was shown that there exists a 2-approximation algorithm for the edge-chromatic sum problem on general graphs.
2r
(r+1)2
decreases for increasing r and ! is its maximum value achieved for r = 3. Thus, we

Now we show that there exists a (1 + )—approximation algorithm for the edge-chromatic sum problem on r-regular

graphs forr > 3. Note that 1+ G +1)2
show that there is an 1! approx1mat10n algorithm for the edge- chromatlc sum problem on regular graphs.

Theorem 9. For any r > 3, there is a polynomial time (1 +
problem on r-regular graphs.

n ])2) approximation algorithm for the edge-chromatic sum

Proof. Let G be an r-regular graph with n vertices and m edges. Now we describe a polynomial time algorithm A for
constructing a special proper (r + 1)-coloring of G. First we construct a proper (r + 1)-coloring « of G in O(mn) time [21].
Next we recolor some edges as it is described in the proof of Theorem 7 to obtain an R-sequential (r 4+ 1)-coloring 8 of G
with |R| > |_ H -| Clearly, we can do it in O(m) time. Now, taking into account that the sum of colors appearing on the edges

T(T+3)

incident to any vertex is at most , we have

r(r+1) n n r(r+3) rr+1) n n_\ rr+3)

-5 D R -2 (- i5) 55
2 - 2

r(r+1) n nr r(r+3)

T2 it o2 (P +4r+ )

2 T4+
On the other hand, since X'(G) > w, we get

T, =2"(Gp) <

T,G) _nr(? +4r+1) 4 r?+4r+1 2r

6 = ar+1)  we+n . e+ T eror
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This shows that there exists a (1 + (riq)z )—approximation algorithm for the edge-chromatic sum problem on r-regular

graphs. Moreover, we can construct the aforementioned coloring 8 for a regular graph in O(mn) time. O
4. Edge-chromatic sums of bipartite graphs

In this section we consider the problem of finding the edge-chromatic sum of bipartite graphs. Let G = (UUW, E) be a bi-
partite graph with bipartition (U, W).By U; € U and W; C W we denote sets of vertices of degree i in U and W, respectively.
Define sets V>; € V(G) and Us; C U asfollows: Vs; = {v : v € V(G)Adg(v) > i}and Us; = {u € V(G) : u € UNdg(u) > i}.
The following was proved.

Theorem 10 ([1-4]). If G = (U U W, E) is a bipartite graph with dg(u) > dg(w) for every uw € E(G), where u € U and
w € W, then G has a U-sequential A(G)-coloring.

By this theorem, we obtain the following corollary.

Corollary 11. If G = (U U W, E) is a bipartite graph with dc(u) > dg(w) for every uw € E(G), whereu € U and w € W, then

a U-sequential A(G)-coloring of G is a sum edge-coloring of Gand £'(G) = ),y w.

In [10], it was shown that the problem of finding the edge-chromatic sum of bipartite graphs G with A(G) = 3 is NP-
complete. Now we give a short proof of this fact. First we need the following:
Problem 1 ([2,3,14]).

Instance: A bipartite graph G = (U U W, E) with A(G) = 3.

Question: Is there a U-sequential 3-coloring of G?

The following was proved.

Theorem 12 ([3,14]). Problem 1 is NP-complete.

Now let us consider the following:

Problem 2.
Instance: A bipartite graph G = (U U W, E) with A(G) = 3.
Question: Is X'(G) = Y, i- |U=i|?

Theorem 13. Problem 2 is NP-complete.
Proof. Clearly, Problem 2 belongs to NP. For the proof of the NP-completeness, we show a reduction from Problem 1 to Prob-
lem 2. We prove that a bipartite graph G = (UUW, E) with A(G) = 3 admits a U-sequential 3-coloring if and only if X'(G) =
Zf;l i- |UZ,- | Let G = (U U W, E) be a bipartite graph with A(G) = 3 and « be a U-sequential 3-coloring of G. In this case
the colors 1, 2, 3 appear on the edges incident to each vertex u € Us, the colors 1, 2 appear on the edges incident to each
vertex u € U, and the color 1 appears on the pendant edges incident to each vertex u € U,.Hence, X'(G, a) = Z?:l i- |UZI-|.
On the other hand, clearly, X’'(G) > Z?:] i |U2,» ; thus X/(G) = 2?21 i |U2i|.

Now suppose that X'(G) = Z?zl i- |Uzi|. By Theorems 1 and 4, there exists a proper 3-coloring § of a bipartite graph G

with A(G) = 3. This implies that the colors 1, 2, 3 appear on the edges incident to each vertex u € Us. If the color 3 appears
on the edges incident to some vertices u € U, or the color 2 or 3 appears on the pendant edges incident to some vertices

u € Uy, then it is easy to see that X’(G, B) > Zle i- |UZ,-|. Hence, 8 is a U-sequential 3-coloring of G. O

Now we prove that the problem of finding the edge-chromatic sum of bipartite graphs G with A(G) = 3 and with addi-
tional conditions is NP-complete, too. We need the following:
Problem 3 ([3,14]).

Instance: A bipartite graph G = (U U W, E) with A(G) = 3 and |U;| = |W;| fori =1, 2, 3.

Question: Is there a V(G)-sequential 3-coloring of G?

The following was proved.

Theorem 14 ([3,14]). Problem 3 is NP-complete.

Now let us consider the following:

Problem 4.

Instance: A bipartite graph G = (U U W, E) with A(G) = 3 and |U;| = |[W;| fori =1, 2, 3.
Question: Is X'(G) = 1 Zf‘:] i |Vail?

Theorem 15. Problem 4 is NP-complete.

Proof. Clearly, Problem 4 belongs to NP. For the proof of the NP-completeness, we show a reduction from Problem 3 to
Problem 4. We prove that a bipartite graph G = (U U W, E) with A(G) = 3 and |U;| = |W;| fori = 1, 2, 3, admits a V(G)-
sequential 3-coloring if and only if X'(G) = % Z?:1 i- |V2,»|. Let o be a V(G)-sequential 3-coloring of G. In this case the colors
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1, 2, 3 appear on the edges incident to each vertex v € V(G) with dg(v) = 3, the colors 1, 2 appear on the edges incident to
each vertex v € V(G) with ds(v) = 2 and the color 1 appears on the pendant edges incident to each vertex v € V(G) with
dc(v) = 1.Hence, X'(G, o) = %Z?Zl i - |V;|. On the other hand, clearly, ¥'(G) > %Z?ﬂ i |Vi; thus 2/(G) = %Z?Zl
i |Vai.

Now suppose that X'(G) = % Z?=1 i- ‘Vzi‘. By Theorems 1 and 4, there exists a proper 3-coloring 8 of a bipartite graph
G with A(G) = 3 and |U;] = |W;| fori = 1, 2, 3. This implies that the colors 1, 2, 3 appear on the edges incident to each
vertex v € V(G) with dg(v) = 3. If the color 3 appears on the edges incident to some vertices v € V(G) with dg(v) = 2 or
the color 2 or 3 appears on the pendant edges incident to some vertices v € V(G) with dg(v) = 1, then it is easy to see that
(G, B) > 1 >0 i-|Vsi|. Hence, B is a V(G)-sequential 3-coloring of G. [

In [19], it was proved that the problem of finding the edge-chromatic sum of bipartite graphs G with A(G) = 3 remains
NP-hard even for planar bipartite graphs.

5. Edge-chromatic sums of split graphs

In this section we consider the problem of finding the edge-chromatic sum of split graphs. A split graph is a graph whose
vertices can be partitioned into a clique C and an independent set I. Let G = (C U I, E) be a split graph, where C = {uy, u,,
..., up}isaclique and I = {vy, v2, ..., vn} is an independent set. Define a number A; as follows: A; = maxi<j<m dc(vj).
Define subgraphs H and H’ of a graph G as follows:

H = (CUI,E(G) \ E(G[C])) and H’ = G[C].

Clearly, H is a bipartite graph with bipartition (C, I), and dy (u;) = d¢(u;) —n+1fori=1,2,...,n,dy(v;) = dg(v)) for
j=12,...,m
Theorem 16. Let G = (C U I, E) be a split graph, where C = {uy, uy, ..., uy} is a clique and I = {vq, v, ..., vy} is an
independent set. If dg(u;) — dg(vj) > n — 1 for every u;v; € E(G), then
(1) if nis even, then

i (dg(ui) —n+1) (dg(uj) —n +2)
2

Z/(G) < min { + Ele(G)—rH»Z(Kﬂ)’

i=1

2’(Kn) + Z (dG(ui) —n +21) (dc(u,-) + n) } ’
i=1

(2) if nis odd, then

i (de(u;) —n+ 1) (de(u;)) —n+2)

> + 2L pe)—ni2Kn),

XY'(G) < min{

i=1

n
(do(u)) —n+1) (do(u;)) +n+2)
'K .
(Kn) + ; >
Proof. For the proof, we are going to construct edge-colorings that satisfy the specified conditions.
Since d¢(u;) — dg(v;) > n — 1for every u;v; € E(G), we have dy (u;) > dy(v;) for each u;v; € E(H). By Theorem 10, there
exists a C-sequential A(H)-coloring « of the graph H and, by Corollary 11, we obtain
n
dp(ui) (du(u) + 1)
X' (H)=X'(H,a) = )
H)=3'(H.o)=) S

i=1

Now we consider two cases.

Case 1: nis even.

In this case, by Theorem 3, we have x'(H") = n — 1. Let 8 be a proper edge-coloring of a graph H" with colors A(G) —
n+2,..., A(G). By Theorem 5, we obtain

Z(G) = Z'(H) + B p¢y—np2Kn)-

On the other hand, let 8’ be a proper edge-coloring of a graph H’ with colors 1, 2, ..., n — 1. Next we define an edge-
coloring y of the graph H as follows: for every e € E(H), let y () = «(e) + n — 1. Thus, by Corollary 6, we obtain

(dg(uj) —n+1) (dg(uy) +n)
5 .

26 = S K) + Y
i=1
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Case 2: nis odd.
In this case, by Theorem 3, we have x'(H’) = n. Let 8 be a proper edge-coloring of a graph H” with colors A(G) — n +
2, ..., A(G) + 1. By Theorem 5, we obtain
T'(G) < Z'(H) + ZL p6)—ns2 Kn)-

On the other hand, let 8’ be a proper edge-coloring of a graph H with colors 1, 2, . . ., n. Next we define an edge-coloring
y of the graph H as follows: for every e € E(H), let y (e) = a(e) + n. Thus, by Corollary 6, we obtain

" (de(ui) —n+1) (dg(ui) +n+2
2,(6)52/(Kn)+z(6( I) + )(G( z)+ + )
i=1 2
Theorem 17. Let G = (C U I, E) be a split graph, where C = {uq, Uy, ..., u,} is a clique and I = {vq, vo, ..., vy} is an
independent set. If d¢(u;) — dc(vj) < n — 1 for every u;v; € E(G), then
(1) if nis even, then

»'(G) <min{)" dow) (dcz(”f) + 1) 2K, 5K + Z do(v)) dc(v;) +2n—1) ’
=1 p
(2) if nis odd, then
>'(G) < min Z dg(vj) (dcz(vj) +1) + 5, (K, B (K + Z de(vy) (dc(v;) +2n+1)
j=1 ‘I

Proof. For the proof, we are going to construct edge-colorings that satisfy the specified conditions.
Since d¢ (u;) — dg(vj)) < n — 1for every u;v; € E(G), we have dy (u;) < dy(vj) for each u;v; € E(H). By Theorem 10, there
exists an I-sequential A;-coloring « of the graph H and, by Corollary 11, we obtain

m m
) ) dy (v) (du(v) + 1) de(vy) (dg(vy) + 1)
E(H)_E(H,a)_z 5 _Z > )

j=1 j=1
Now we consider two cases.
Case 1: nis even.
In this case, by Theorem 3, we have x’(H") = n— 1. Let 8 be a proper edge-coloring of a graph H’ with colors A;+1, ...,

A; 4+ n — 1. By Theorem 5, we obtain

2(G) < Z'(H) + XL 4 11 (Kn).
On the other hand, let 8’ be a proper edge-coloring of a graph H’ with colors 1, 2, ..., n — 1. Next we define an edge-
coloring y of the graph H as follows: for every e € E(H), let y (e) = a(e) + n — 1. Thus, by Corollary 6, we obtain
dc(vy) (dg(vy) +2n — 1)

).7(G)<E(K)—|—Z >

Jj=1

Case 2: nis odd.
In this case, by Theorem 3, we have x’(H’) = n.Let B be a proper edge-coloring of a graph H’ with colors A;+1, ..., A+
n. By Theorem 5, we obtain
2'(6) < Z'H) + 5L, 1 (Kn).
On the other hand, let B8’ be a proper edge-coloring of a graph H’ with colors 1, 2, . . ., n. Next we define an edge-coloring
y of the graph H as follows: for every e € E(H), let y (e) = «/(e) + n. Thus, by Corollary 6, we obtain
de(vy) (dg(vj) +2n+ 1)

2(0)<2(1<)+Z >

j=1
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