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ABSTRACT 
Let  us adduce some definitions: 

If  a recursively enumerable (r.e.) set  A is a disjoint union of 
two sets B  and C, then  we say that  B, C  is  an  r.e. splitting 

of A.  
The r.e. set A  is tt-mitotic (btt-mitotic) if there is an r.e. 

splitting  (B,C) of  A  such that the sets  B  and C  both 

belong to the same tt -  (btt - ) degree of unsolvability, as the 
set  A. 

In this paper the existence of  the  tt - mitotic hypersimple 
set, which is not btt - mitotic is proved. 

 

Keywords 
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1. INTRODUCTION  
Notation. We shall use the notions and terminology 

introduced in (Soare [6]), (Downey and Stob [1]), (Rogers 

[4]). 
We deal with sets and functions over the nonnegative 

integers. {0,1, 2, }ω = K .  

Let us define the function ( , )x yτ  as follows:   

( , )x yτ { }2 21
2 3

2
x xy y x y= + + + + . 

The function ( , )x yτ  is  a  1:1  recursive  function  from 

ω ω××××  onto ω . We shall use the symbol ,x y< >  as an 

abbreviation for ( , )x yτ .  

Let 
1

π  and 
2

π  denote the inverse functions 

1 ( , )x y xπ < > =  and  
2 ( , )x y yπ < > = .  

( )xϕ ↓  denotes that ( )xϕ  is defined, and  ( )xϕ ↑  denotes 

that ( )xϕ  is undefined. 

A
c  denotes the characteristic function of A  which is often 

identified with A  and written simply as ( )A x . 

 

Definition 1.  Let A  be the nonempty finite set 
1

{ , , }
n

x xL , 

where 
1 2 n

x x x< < <L . Then the integer  

1 22 2 2 nxx x+ + +L  is called a  canonical index of A . If A  

is empty, the canonical index  assigned to A  is 0 . 

 

Let 
xD  be the finite set, the canonical index of  which is  x  

(see [4] p.70). 

 

The definitions of  tt - and btt - reducibilities are from [4]. 

 

Definition 2. (i) A sequence { }n n
F

ω∈
 of  finite sets is a 

strong array if there is a recursive function  f  such that 

( )n f nF D= . 

(ii)    An array is disjoint if its members are pairwise disjoint. 

(iii) An infinite set B
 

is hyperimmune, abbreviated  

h-immune, if there is no disjoint strong array { }n n
F

ω∈  
such 

that nF B ≠ ∅I  for all n . 

(iv) An r.e. set A is hypersimple, abbreviated  

h-simple, if  A  is  h-immune (see Soare [6], p. 80). 

 

Definition 3. (a) The ordered pair << 1
, ,

k
x xL >, α >, 

where < 1, ,
k

x xL > is a k -tuple of integers and α  is  a  

k -ary Boolean function ( 0k > ) is called a truth-table 

condition  (or tt -condition) of  norm k . The set 

{
1 , ,

k
x xL } is called an  associated set of the tt -condition.  

(b) The tt -condition << 
1 , ,

k
x xL >,α >, is satisfied by 

A  if ( )1
( ), , ( ) 1

A A k
c x c xα =L . 

 

Notation. Each tt -condition is a finite object; clearly an 

effective coding can be chosen which maps all  

tt -conditions (of varying norm) onto ω . 

Assume henceforth that such a particular coding has been 

chosen. When we speak of  “ tt -condition x ”, we shall 

mean the tt -condition with the code number x . 

Code << 1, ,
k

x xL >,α > denotes the code number of  

tt -condition   << 1
, ,

k
x xL >,α > in this coding. 

 

Definition 4. (a) A  is truth-table reducible to B  (notation: 

ttA B≤ ) if there is a recursive function f  such that for all 

x  [ x A tt∈ ⇔ -condition ( )f x  is satisfied by B ]. We 

also abbreviate “truth-table reducibility” as  

“ tt -reducibility”. 



(b) A  is bounded  truth-table reducible to B  (notation: 

btt
A B≤ ), if ( ∃recursive f ) ( m∃ )( x∀ ) [ tt -condition 

( )f x  has norm m≤ , and [ ( )x A f x∈ ⇔  is satisfied by 

B ]]. 

We abbreviate “bounded truth-table reducibility” as  

“ btt -reducibility” (see Rogers [4]). 

 

2. PRELIMINARIES 

Definition 5. Suppose ttA B≤  and ( )x∀ [ x A∈ ⇔
 

tt -condition ( )f x  is satisfied by B ] and 
n

fϕ = . Then we say 

that ttA B≤  by 
nϕ . 

Definition 6. We say that  
0 1( , , , , )A A eϑ ψ  is a  

quasi- btt -mitotic splitting of A  if 

a)  
0 1( , )A A  is a  r.e. splitting of A  and 

b) 
0btt

A A≤  by function ϑ  with norm 
e

p  (where 

1 ( )
e

p eπ= )   and 

c) 
1bttA A≤  by function ψ  with norm 

eq  (where 

2 ( )
e

q eπ= ). 

Let us modify notations defined in (Lachlan [3]) with the 

purpose to adapt them to our theorem. 

Notation.  Let h  be a recursive function from ω  onto 
5ω . 

Define  ( , , , ,e e e e eY Z jϑ ψ ) to  be  a quintuple  

(
1 2 3 4, , , ,

oe e e eW W eϕ ϕ ), where 
0 1 2 3 4( ) ( , , , , )h e e e e e e= . 

 

Definition 7. If A  is  r.e. then we say that the  

non- btt -mitotic condition  of  e order is satisfied  for A , if  

it  is  not  the  case  that ( , , , ,
e e e e e

Y Z jϑ ψ ) is a quasi- btt -

mitotic splitting of A . 

Notation. Let ( , )x e s  be such a number that , ( ( , ))e s x e sϑ ↓  

and , ( ( , ))e s x e sψ ↓ (remind, that 
2e eϑ ϕ=  and 

3e eψ ϕ= ).  

In this case  

2
( , )as e s  denotes the associated set of   

tt -condition )),(( sexeϑ ;  

3
( , )as e s  denotes the associated set of tt -condition 

( ( , ))e x e sψ ;  

*( , )as e s  denotes the set 
2
( , )as e s U

3
( , )as e s . 

If , ,( ( , )) ( ( , ))( )e s e sx e s x e sϑ ψ↑ ↑ , then define 

2
( , )as e s = ∅

 

3
( ( , ) ).as e s = ∅

 

If , ,( ( , )) ( ( , ))( )e s e sx e s x e sθ ψ↑ ∨ ↑ , then define 

*
( , )as e s = ∅ . 

( , )assoc e s  denotes the set 
*

0

( , )
e

i

as i s
=
U . 

 
 

Definition 8.  ( , , , , )
e e e e e

Y Z jϑ ψ  is btt -threatening  A  

through  ( , )x e s  at  stage  s ,  if  all the following hold: 

i) , ,e s e sY Z = ∅I , 

ii) , ,( ( , )) ( ) & ( ) &( )e s e sy x e s y yϑ ψ∀ ≤ ↓ ↓

( )( , )y x e s∀ ≤
 
 [the norm of  ( )e yϑ is less or equal than 

4

&ep
 
 the  norm of   ( )

e
yψ

 
is less or equal than 

4
e

q ], 

where 0 1 2 3 4( ) ( , , , , ),h e e e e e e=
4

1 4( ) ,ee pπ =  

4
2 4( ) ee qπ = . 

iii)
 

 ( , )
s

x e s A∈ ⇔ tt -condition , ( )e s nϑ  with norm 

4
e

p satisfied  by  
,

)
e s

Y   & ( , )
s

x e s A∈ ⇔
 
tt -condition  

, ( )e s nψ  with  norm
4

e
q  satisfied  by ,Z ])e s , 

iv) , ,( ) ( )( )s e s e sA m Y Z m= U  for all 
* ( ( , )).m as x e s∈  

 

For the non- btt -mitotic condition the following proposition 

is true: 

If  ( , , , , )
e e e e e

Y Z jϑ ψ  is btt -threatening  A  through 

( , )x e s  at stage s , ( , )
s

x e s A A∈ −  and  for  all 

( , )m x e s≠  such that 
*( ( , ))m as x e s∈  we  have 

( ) ( )
s

A m A m= , then the non- btt -mitotic condition of  order 

e  is satisfied for A . 

 

This proposition is similar to Lemma 3 (about the nonmitotic 

condition) in (Lachlan [3]). 

 

To satisfy the non- btt -mitotic condition of order  e  for A 

do the following. Have a number ( , )x e s  (so called  

follower) in the complement of A  ready to put into A  if 

( , , , , )
e e e e e

Y Z jϑ ψ  happens to threaten A  through x  at 

some stage s  and never put any other number belonging to 

*
( ( , ))as x e s  into A  after stage 1s + . 

 

Definition 9. For any set A ω⊆  and x ω∈  define the  

x -column  of  A . { }( ) , : ,xA x y x y A= < > < >∈  (see 

Soare  [5], p. 519). 

 

Notation.  
( , )

,

y x

y xM ω < >= . 

0

,2

0

e e i

i

M M
∞

=

=U ;  
1

,2 1

0

e e i

i

M M
∞

+
=

=U . 

0 0

0

e

e

M M
∞

=

=U  ;   
1 1

0

e

e

M M
∞

=

=U . 

, ,2 ,2 1e i e i e iM M M +=% U ;  , ,

0 0

e e i e i

i i

M M M
∞ ∞

= =

= = %U U . 

Thus, 
0 1

M M ω=U . 

 

Let 
0 1, , , ,na a aK K  be the members of set A  in 

increasing order. The integer 
ia  is denoted  as ( )( )id A i . 

 

For any  ,e k  define:  



*

,2 ,2 ,2( )(1), ( )(2), ,{e k e k e kM id M id M= K
 

4 4
,2( ) ( 1) ;}e k e eid M p q+ +

*

,2 1 ,2 1 ,2 1( )(0), ( )(1), ,{e k e k e kM id M id M+ + += K
 

4 4
,2 1( )( ) .}e k e eid M p q+ +

 
 

3. PROOF OF THE THEOREM 
Let us prove the following theorem. 

 

Theorem. There exists a tt -mitotic hypersimple set, 

which is not btt -mitotic. 

 

Proof (sketch).  

The theorem is proved using a finite injury priority 

argument. We construct a set A  in stages s ,  

ss
A A

ω∈
=U . The set A  will be non- btt -mitotic and, 

withal, tt -mitotic and hypersimple. 

  

We construct A  to satisfy for all e ω∈  the requirements:  

eR  :   The non-btt-mitotic condition of order e  is satisfied  

for A . 

eP  :  (( )( ( ) )& ( , ) ( )[[ ey y u v u vϕ∀ ↓ ≠ ⇒  

( ) ( ) ( )
( ) ( ))] ]

e e eu v y
D D y D Aϕ ϕ ϕ⇒ = ∅ ⇒ ∃ ⊆I . 

 

Note  that  if  A  is not btt-mitotic, then A  is infinite. 

 

Order the requirenments in the following priority ranking: 

0 0 1 1 2 2, , , , , ,R R R R R R% % % K  . 

 

Definition 10. 
iR  requires attention  at stage  s  if  there 

exists such x  that ( , , , , )e e e e eY Z jϑ ψ  is btt -threatening 

A  through  x  at stage  s   and  if  it is not satisfied. 

 

Construction 

Stage 0s = :  Let 
0 ,A = ∅ ,0( ,0) ( )(0)ex e id M= for all  e. 

Stage 1+s :  Act on the highest priority requirement which 

requires attention, if such a requirement exists:  

 

Case 1.  Let 
eR  requires attention at stage  s  (through  

( , )x e s ). 

Let ,2( , ) e kx e s M∈  for some  k  (that is ( , )x e s =

,2( )(0)e kid M ).  

Find  z  such,  that  
* *

,2 ,2 1e k e kz M M +∈ U   & 

* *

,2 1( )( ) ( , )e kid M z as e s+ ∉   &  
,2

*( )( )
e k

id M z
*( , )as e s∉ .   

Such  an  integer z  exists  certainly  (because 

( )
4 4

*

0 0

( , ) ( )[ ]
e e

i i

i i

s as i s p q
= =

∀ ≤ +∑ ∑ ,  while 

4 4

* *

,2 ,2 1

0

( ) 1
e

e k e k i i

i

M M p q+
=

= = + +∑ ).  

 

 We choose the least such integer 
0z . Set 

{ } { } { }* *

1 ,2 0 ,2 1 0( , ) ( )( ) ( )( )s s e k e kA A x e s id M z id M z+ += U U U . 

Set ˆ,2
ˆ( , 1) ( )(0)e sx e s id M+ =  for  all  ê e≥ . 

 

Declare 
eR  satisfied, declare  all  lower R  unsatisfied. 

 

Case 2.   

Notation. Define ( , )l e s k= , where k  is such that  

,2( , ) ( )(0)e kx e s id M= . 

For all  y ω∈ , if , ,e k r  are such that      

,2( )( )e ky id M r=   
,2 1( )( )e ky id M r+∨ = , then define  

,2 1( ) ( )( )e kod y id M r+= . 

Note if  y  is such that  ,2( , , ) ( ( )( ))e ke k r y id M r∃ =  

then ( )y od y= . 

If   , ( )( ) ( ) & ( , ) &([( ) [
ee s mm i e m y z z Dϕϕ∃ ∀ ≤ ↓ ∀ ∈

0

( , )
e

i

y assoc i s
=

∈ UU
( , )

* *

,2 ,2 1

0

( ))
l e s

e i e i

i

M M +
=

⇒UU
 

( )]],z od y>  then let  m0  be the least of such  m.

 If   Pe  is not satisfied  (at stage   s)  then  for  each  , ,z k y   

such that  
0( )e mz Dϕ∈   and  

,2 ,2 1( )( ) or ( )( )( )e k e kz id M y z id M y+= =  we  set 

,2 1( )( )e k sid M y A +∈  and   
,2 1 1( )( )e k sid M y A+ +∈ . 

Note, that some elements, included into  A  in that way, 

could be included into  A  before the  stage  s+1. 

Set ˆ,2
ˆ( , 1) ( )(0)

e s
x e s id M+ =  for  all  ê e≥ . 

 

Thus, eP  is satisfied, declare  all  lower R  unsatisfied. 

 

Verification 

Lemma 1. lim ( , ) ( )s x e s x e=  exists  for all  e. 

Proof.  By induction on  e . 

Suppose there exists  a stage  s0   such that  for all  ê e<
 

ˆ ˆlim ( , ) ( )s x e s x e=
  

exists and is attained  by  s0. 

 

Then  after  stage  s0  only  
eR   and  

eP
 
can move  ( , )x e s . 

eR   and  
eP , each taken separately,  after  s0  acts at most 

once and is met. Therefore 

0( ) ( ( , ) lim ( , ))ss s x e s x e s∃ > =% % . 

Notation.  Define  
0 1

,A A M A A M= =%% %I I . 

 

Lemma 2.  
ttA A≡ %% % . 

Let us prove that  
tt

A A≡ %% %  (where 
0A A M=% I , 

1
A A M=%% I ).  We must construct the function 

0
g  which  

tt-reduces A%  to A
%%   and  the function 1g  which  

tt-reduces A
%%  to A% . 

In this case there would exist recursive functions  
0 1,g g% %

 

such that 
tt

A A≤ %%   by function   
0g%  and 

ttA A≤ %  by 

function   
1g% , because  

0 1,M M  are recursive sets. 



 

We will construct the functions 
0 1,g g  according to the 

following considerations.  
 

Construction of 
0g : We shall indicate how to compute 

0 ( )g x
 
for any x . 

There are three cases to consider: 

i) If  ( ) ( )e k∃ ∃ ( ,2( )(0)e kx id M= ),  then  define 

0 ( )g x code= <<
,2 1 ,2 1( ) (0), ( ) (1), ,e k e kid M id M+ + K  

,2 1( ) ( )e kid M p q+ + >, 1α >  

(where 0 1 2 3 4( ) ( , , , , )h e e e e e e= , 
4

1 4( ) ,ee pπ =

4
2 4( ) ee qπ = ; 

4 4

4 4

0 1

1 0 1

 

0, if 0;
( , , , )

1, otherwise.                           

e e

e e

p q

p q

x x x
x x xα

+

+

= = = =
= 


K
K

).
 

ii) If  ( ) ( 0)e k∃ ∃ > (
*

,2e kx M∈ ), then find z  such  that  

*

,2( ) ( )e kx id M z= . 

Now define 
0
( )g x code= <<

*

,2 1( ) ( ),e kid M z+ >,
2

α >,  where 

2
( )x xα =  for all  {0,1}x∈ . 

iii) If  { } *

,2 ,2( ) ( ) ( ( )(0) )e k e ke k x id M M∀ ∀ ∉ U ,  then 

find  z  such that ,2( )( )e kx id M z= . Now  define 

0 ( )g x code= << ,2 1( )( )e kid M z+ >,
2α >,  where 

2 ( )x xα =
 
 for all {0,1}x ∈ . 

 

Construction of 1g : We shall indicate how to compute 

1( )g x  for any x . 

There are two  cases to consider: 

i) If  
*

,2 1
( )( ) ( )

e k
e k x M +∃ ∃ ∈ ,  then find z  such  that  

*

,2 1( ) ( )e kx id M z+= . Now define  

1( )g x code= <<
*

,2( )( )e kid M z >, 2α >,  where 
2 ( )x xα =  

for all  {0,1}x∈ . 

ii) If  
*

,2 1
( ) ( ) ( )

e k
e k x M +∀ ∀ ∉ ,  then  find  z  such  that  

*

,2 1( ) ( )e kx id M z+= .  Now define  

1( )g x code= <<
,2( )( )e kid M z >, 2α >,   where 

2 ( )x xα =  

for   all {0,1}x ∈ . 

 

The functions 
0g , 

1g  satisfy the abovementioned 

requirements. 

 

Lemma 3.  A is not btt -mitotic. 

As mentioned  above, ( )e∀  there exists a stage 0s  such  

that     ( )0 0( ) ( , ) ( , )s s x e s x e s∀ ≥ = .  

For each e   case  a)  or  case b) takes place: 

a) 0( )s s¬∃ ≥ ( ( , , , , )e e e e eY Z jϑ ψ  is btt -threatening A  

through ( , )x e s at stage s ). Therefore, the non- btt -mitotic 

condition of order e  is satisfied  for A . 

b) 0( )s s∃ ≥ ( ( , , , , )e e e e eY Z jϑ ψ  is btt -threatening  A   

through  ( , )x e s  at stage  s ). 

In this case the follower ( , )x e s  will  be  put into A  and 

non- btt -mitotic condition of order e  will be satisfied.  

Thus, set A  is non- btt -mitotic. 

 

Lemma 4.  A  is  hypersimple. 

For  each   ê  there exists  0s  such that  

0 0
ˆ( )( ) ( , ) ( , ) ( )( )i e s s x i s x i s x i∀ ≤ ∀ ≥ = = . 

 So for each ê  there exists  0s  such that  

0 0
ˆ( )( ) ( , ) ( , ) ( )( )i e s s i s l i s l il∀ ≤ ∀ ≥ = = . 

Therefore, for each  ê  there exists  0s  such that 
0

( )s s∀ ≥  

0ˆ( , )
* *

,2 ,2 1

0

( )(
l e s

i i i i

i

M M +
=

=UU
ˆ( , )

* *

,2 ,2 1

0

( )
l e s

i i i i

i

M M +
=

= =UU

ˆ( )
* *

,2 ,2 1

0

( ) )
l e

i i i i

i

M M +
=

UU .  

For each  ê  there exists  0s  such that 
0

( )s s∀ ≥

0
ˆ ˆ ˆ( , ) ( , ) ( )assoc e s assoc e s assoc e= = . 

 

Also, for each  ê  there exists 0s  such that 
0

( )s s∀ ≥  

ˆ ˆ ˆ

0

0 0 0

( , ) ( , ) ( ).
e e e

i i i

assoc i s assoc i s assoc i
= = =

= =U U U  

Let  e
ϕ   be total  function and 

( ) ( )( , )( )
e eu vu v u v D Dϕ ϕ∀ ≠ ⇒ = ∅I . 

Then ( )( ) ( , ) &([
e mm y z z Dϕ∃ ∀ ∈

0

( )
e

i

y assoc i
=

∈ UU

( )
* *

,2 ,2 1

0

( ))
l e

e i e i

i

M M +
=

⇒UU ( )]]z od y>  . Therefore, there 

exist  m0,s0 such that 
00, ( )( )(

e s mz z Dϕ∀ ∈ ⇒  ( ))z od y> for 

all  y such that 0

0

( , )
e

i

y assoc i s
−

∈ UU
( )

* *

,2 ,2 1

0

( )
l e

e i e i

i

M M +
=

UU  

and  Case 2 takes place at stage  s0+1. So 
0( )e m

Dϕ is  

included in  A  at stage  s0+1. Thus   Pe  is met. �
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