On the Existence of the *tt*-Mitotic Hypersimple Set Which is not *btt*-Mitotic

Arsen H. Mokatsian

Institute for Informatics and Automation Problems National Academy of Sciences of Armenia Yerevan, Armenia e-mail: arsenmokatsian@gmail.com

ABSTRACT

Let us adduce some definitions:

If a recursively enumerable (r.e.) set A is a disjoint union of two sets B and C, then we say that B, C is an *r.e. splitting* of A.

The r.e. set A is *tt-mitotic* (*btt-mitotic*) if there is an r.e. splitting (B,C) of A such that the sets B and C both belong to the same tt - (btt -) degree of unsolvability, as the set A.

In this paper the existence of the *tt*-mitotic hypersimple set, which is not *btt*-mitotic is proved.

Keywords

Recursively enumerable (r.e.) set, hypersimple set, mitotic set, *tt*-reducibility, *btt*-reducibility.

1. INTRODUCTION

Notation. We shall use the notions and terminology introduced in (Soare [6]), (Downey and Stob [1]), (Rogers [4]).

We deal with sets and functions over the nonnegative integers. $\omega = \{0, 1, 2, ...\}$.

Let us define the function $\tau(x, y)$ as follows:

$$\tau(x,y) = \frac{1}{2} \Big\{ x^2 + 2xy + y^2 + 3x + y \Big\}.$$

The function $\tau(x, y)$ is a 1:1 recursive function from $\omega \times \omega$ onto ω . We shall use the symbol $\langle x, y \rangle$ as an abbreviation for $\tau(x, y)$.

Let π_1 and π_2 denote the inverse functions $\pi_1(\langle x, y \rangle) = x$ and $\pi_2(\langle x, y \rangle) = y$.

 $\varphi(x) \downarrow$ denotes that $\varphi(x)$ is defined, and $\varphi(x) \uparrow$ denotes that $\varphi(x)$ is undefined.

 c_A denotes the characteristic function of A which is often identified with A and written simply as A(x).

Definition 1. Let *A* be the nonempty finite set $\{x_1, \dots, x_n\}$, where $x_1 < x_2 < \dots < x_n$. Then the integer $2^{x_1} + 2^{x_2} + \dots + 2^{x_n}$ is called a *canonical index of A*. If *A* is empty, the *canonical index* assigned to *A* is 0. Let D_x be the finite set, the canonical index of which is x (see [4] p.70).

The definitions of *tt* - and *btt* - reducibilities are from [4].

Definition 2. (*i*) A sequence $\{F_n\}_{n\in\omega}$ of finite sets is a *strong array* if there is a recursive function f such that $F_n = D_{f(n)}$.

(*ii*) An array is *disjoint* if its members are pairwise disjoint. (*iii*) An infinite set B is *hyperimmune*, abbreviated *h-immune*, if there is no disjoint strong array $\{F_n\}_{n\in\omega}$ such

that $F_n \cap B \neq \emptyset$ for all n.

(*iv*) An r.e. set A is hypersimple, abbreviated h-simple, if \overline{A} is h-immune (see Soare [6], p. 80).

Definition 3. (a) The ordered pair $\langle x_1, \dots, x_k \rangle$, $\alpha \rangle$, where $\langle x_1, \dots, x_k \rangle$ is a k-tuple of integers and α is a k-ary Boolean function (k > 0) is called a *truth-table* condition (or tt-condition) of norm k. The set $\{x_1, \dots, x_k\}$ is called an associated set of the tt-condition. (b) The tt-condition $\langle x_1, \dots, x_k \rangle$, $\alpha \rangle$, is satisfied by A if $\alpha(c_A(x_1), \dots, c_A(x_k)) = 1$.

Notation. Each *tt* -condition is a finite object; clearly an effective coding can be chosen which maps all *tt* -conditions (of varying norm) onto ω .

Assume henceforth that such a particular coding has been chosen. When we speak of "tt -condition x", we shall mean the tt -condition with the code number x.

Code $\langle x_1, \dots, x_k \rangle, \alpha \rangle$ denotes the code number of *tt* -condition $\langle x_1, \dots, x_k \rangle, \alpha \rangle$ in this coding.

Definition 4. (a) A is truth-table reducible to B (notation: $A \leq_{tt} B$) if there is a recursive function f such that for all x [$x \in A \Leftrightarrow tt$ -condition f(x) is satisfied by B]. We also abbreviate "truth-table reducibility" as "tt -reducibility". (b) A is bounded truth-table reducible to B (notation: $A \leq_{bu} B$), if $(\exists recursive f) (\exists m)(\forall x)$ [tt -condition f(x) has norm $\leq m$, and [$x \in A \Leftrightarrow f(x)$ is satisfied by B]].

We abbreviate "bounded truth-table reducibility" as "btt -reducibility" (see Rogers [4]).

2. PRELIMINARIES

Definition 5. Suppose $A \leq_{tt} B$ and $(\forall x) [x \in A \Leftrightarrow tt$ -condition f(x) is satisfied by B] and $\varphi_n = f$. Then we say that $A \leq_{tt} B$ by φ_n .

Definition 6. We say that $(A_0, A_1, \vartheta, \psi, e)$ is a *quasi-btt -mitotic splitting of* A if

- a) (A_0, A_1) is a r.e. splitting of A and
- b) $A \leq_{btt} A_0$ by function ϑ with norm p_e (where $p_e = \pi_1(e)$) and

c) $A \leq_{btt} A_1$ by function Ψ with norm q_e (where $q_e = \pi_2(e)$).

Let us modify notations defined in (Lachlan [3]) with the purpose to adapt them to our theorem.

Notation. Let *h* be a recursive function from \mathcal{O} onto \mathcal{O}^5 . Define $(Y_e, Z_e, \vartheta_e, \psi_e, j_e)$ to be a quintuple $(W_{e_e}, W_{e_e}, \varphi_{e_e}, \varphi_{e_e}, e_4)$, where $h(e) = (e_0, e_1, e_2, e_3, e_4)$.

Definition 7. If A is r.e. then we say that the non-btt-mitotic condition of e order is satisfied for A, if it is not the case that $(Y_e, Z_e, \vartheta_e, \psi_e, j_e)$ is a quasi-btt-mitotic splitting of A.

Notation. Let x(e,s) be such a number that $\vartheta_{e,s}(x(e,s)) \downarrow$ and $\psi_{e,s}(x(e,s)) \downarrow$ (remind, that $\vartheta_e = \varphi_{e_1}$ and $\psi_e = \varphi_{e_1}$).

In this case

 $as^2(e,s)$ denotes the associated set of *tt*-condition $\partial_e^0(x(e,s))$;

 $as^{(s)}(e,s)$ denotes the associated set of tt-condition $\Psi_{e}(x(e,s))$;

$$as^{*}(e,s)$$
 denotes the set $as^{2}(e,s) \cup as^{3}(e,s)$.
If $\vartheta_{e,s}(x(e,s)) \uparrow (\psi_{e,s}(x(e,s)) \uparrow)$, then define
 $as^{2}(e,s) = \emptyset$ ($as^{3}(e,s) = \emptyset$).

If $(\theta_{e,s}(x(e,s)) \uparrow \lor \psi_{e,s}(x(e,s)) \uparrow)$, then define $as^*(e,s) = \emptyset$.

assoc(e,s) denotes the set $\bigcup_{i=0}^{e} as^{*}(i,s)$.

Definition 8. $(Y_e, Z_e, \vartheta_e, \psi_e, j_e)$ is *btt* -threatening A through x(e, s) at stage s, if all the following hold:

 $\begin{array}{ll} i) & Y_{e,s} \cap Z_{e,s} = \varnothing \,, \\ ii) & (\forall y \leq x(e,s)) \big(\vartheta_{e,s}(y) \downarrow \& \ \psi_{e,s}(y) \downarrow \big) \& \\ & \left(\forall y \leq x(e,s) \right) \ [\text{the norm of } \ \vartheta_e(y) \text{ is less or equal than } \\ & p_{e_4} \& \text{ the norm of } \ \psi_e(y) \text{ is less or equal than } \\ & q_{e_4} \ \end{bmatrix}, \\ \text{where } h(e) = (e_0, e_1, e_2, e_3, e_4), \ \pi_1(e_4) = p_{e_4}, \\ & \pi_2(e_4) = q_{e_4} \,. \end{array}$

 $\begin{array}{ll} \mbox{iii)} & x(e,s) \in A_s \iff tt \mbox{-condition } \mathcal{P}_{e,s}(n) \mbox{ with norm} \\ p_{e_4} \mbox{satisfied by } Y_{e,s}) & \& \ x(e,s) \in A_s \iff tt \mbox{-condition} \\ \psi_{e,s}(n) \mbox{ with norm } q_{e_4} \mbox{ satisfied by } \mathbf{Z}_{e,s})], \end{array}$

iv) $A_s(m) = (Y_{e,s} \bigcup Z_{e,s})(m)$ for all $m \in as^*(x(e,s))$.

For the non-btt -mitotic condition the following proposition is true:

If $(Y_e, Z_e, \vartheta_e, \psi_e, j_e)$ is *btt*-threatening A through x(e,s) at stage s, $x(e,s) \in A - A_s$ and for all $m \neq x(e,s)$ such that $m \in as^*(x(e,s))$ we have $A(m) = A_s(m)$, then the non-*btt*-mitotic condition of order e is satisfied for A.

This proposition is similar to Lemma 3 (about the nonmitotic condition) in (Lachlan [3]).

To satisfy the non-*btt* -mitotic condition of order *e* for *A* do the following. Have a number x(e, s) (so called *follower*) in the complement of *A* ready to put into *A* if $(Y_e, Z_e, \vartheta_e, \psi_e, j_e)$ happens to threaten *A* through *x* at some stage *s* and never put any other number belonging to $as^*(x(e, s))$ into *A* after stage s+1.

Definition 9. For any set $A \subseteq \omega$ and $x \in \omega$ define the *x*-column of *A*. $A^{(x)} = \{ < x, y > :< x, y > \in A \}$ (see Soare [5], p. 519).

Notation.
$$M_{y,x} = \omega^{(\langle y,x \rangle)}$$
.
 $M_e^0 = \bigcup_{i=0}^{\infty} M_{e,2i} ; M_e^1 = \bigcup_{i=0}^{\infty} M_{e,2i+1} .$
 $M^0 = \bigcup_{e=0}^{\infty} M_e^0 ; M^1 = \bigcup_{e=0}^{\infty} M_e^1 .$
 $\tilde{M}_{e,i} = M_{e,2i} \bigcup M_{e,2i+1} ; M_e = \bigcup_{i=0}^{\infty} M_{e,i} = \bigcup_{i=0}^{\infty} \tilde{M}_{e,i} .$
Thus, $M^0 \bigcup M^1 = \omega .$

Let $a_0, a_1, \dots, a_n, \dots$ be the members of set A in increasing order. The integer a_i is denoted as id(A)(i).

For any e, k define:

$$\begin{split} &M_{e,2k}^* = \left\{ id(M_{e,2k})(1), id(M_{e,2k})(2), \dots, \\ &id(M_{e,2k})(p_{e_4} + q_{e_4} + 1) \right\}; \\ &M_{e,2k+1}^* = \left\{ id(M_{e,2k+1})(0), id(M_{e,2k+1})(1), \dots, \\ &id(M_{e,2k+1})(p_{e_4} + q_{e_7}) \right\}. \end{split}$$

3. PROOF OF THE THEOREM

Let us prove the following theorem.

Theorem. There exists a *tt*-mitotic hypersimple set, which is not *btt*-mitotic.

Proof (sketch).

The theorem is proved using a finite injury priority argument. We construct a set A in stages s, $A = \bigcup_{s \in \omega} A_s$. The set A will be non-*btt*-mitotic and, withal, *tt*-mitotic and hypersimple.

We construct A to satisfy for all $e \in \omega$ the requirements:

 R_e : The non-*btt*-mitotic condition of order e is satisfied for A.

$$P_e : \left[\left[(\forall y) (\varphi_e(y) \downarrow) \& (u, v) ((u \neq v) \Rightarrow \right. \\ \left. \Rightarrow D_{\varphi_e(u)} \cap D_{\varphi_e(v)} = \emptyset \right] \right] \Rightarrow (\exists y) (D_{\varphi_e(y)} \subseteq A) \right]$$

Note that if A is not *btt*-mitotic, then \overline{A} is infinite.

Order the requirements in the following priority ranking: $\tilde{R}_0, R_0, \tilde{R}_1, R_1, \tilde{R}_2, R_2, \dots$.

Definition 10. R_i requires attention at stage *s* if there exists such *x* that $(Y_e, Z_e, \vartheta_e, \psi_e, j_e)$ is *btt* -threatening *A* through *x* at stage *s* and if it is not satisfied.

Construction

Stage s = 0: Let $A_0 = \emptyset$, $x(e, 0) = id(M_{e,0})(0)$ for all e.

Stage s+1: Act on the highest priority requirement which requires attention, if such a requirement exists:

Case 1. Let R_e requires attention at stage *s* (through x(e, s)).

Let $x(e,s) \in M_{e,2k}$ for some k (that is $x(e,s) = id(M_{e,2k})(0)$).

Find z such, that $z \in M^*_{e,2k} \bigcup M^*_{e,2k+1}$ & $id(M^*_{e,2k+1})(z) \notin as^*(e,s) \& id(M^*_{e,2k})(z) \notin as^*(e,s).$

Such an integer z exists certainly (because

$$\begin{split} \big(\forall s\big)\Big[\sum_{i=0} \left|as^*(i,s)\right| &\leq \sum_{i=0} (p_{i_4} + q_{i_4})\Big], \text{ while} \\ \Big|M^*_{e,2k}\Big| &= \Big|M^*_{e,2k+1}\Big| = \sum_{i=0}^e (p_{i_4} + q_{i_4}) + 1). \end{split}$$

We choose the least such integer z_0 . Set

$$\begin{split} A_{s+1} &= A_s \bigcup \left\{ x(e,s) \right\} \bigcup \left\{ id(M^*_{e,2k})(z_0) \right\} \bigcup \left\{ id(M^*_{e,2k+1})(z_0) \right\}.\\ \text{Set } x(\hat{e},s+1) &= id(M_{\hat{e},2s})(0) \text{ for all } \hat{e} \geq e \,. \end{split}$$

Declare R_e satisfied, declare all lower R unsatisfied.

Case 2.

Notation. Define l(e, s) = k, where k is such that $x(e, s) = id(M_{e^{2k}})(0)$.

For all $y \in \omega$, if e, k, r are such that $y = id(M_{e,2k})(r) \lor y = id(M_{e,2k+1})(r)$, then define $od(y) = id(M_{e,2k+1})(r)$.

Note if y is such that $(\exists e, k, r) (y = id(M_{e,2k})(r))$ then y = od(y).

If
$$(\exists m) [(\forall i \le e) \varphi_{e,s}(m) \downarrow \& (\forall y, z) [(z \in D_{\varphi_e(m)} \&$$

$$y \in \bigcup_{i=0}^{e} assoc(i,s) \cup \bigcup_{i=0}^{l(e,s)} (M_{e,2i}^* \cup M_{e,2i+1}^*)) \Rightarrow$$

z > od(y)]], then let m_0 be the least of such m.

If P_e is not satisfied (at stage *s*) then for each z, k, ysuch that $z \in D_{\varphi_e(m_0)}$ and

$$(z = id(M_{e,2k})(y) \text{ or } z = id(M_{e,2k+1})(y))$$
 we set
 $id(M_{e,2k})(y) \in A_{s+1}$ and $id(M_{e,2k+1})(y) \in A_{s+1}$.

Note, that some elements, included into A in that way, could be included into A before the stage s+1. Set $x(\hat{e}, s+1) = id(M_{\hat{e}_{2s}})(0)$ for all $\hat{e} \ge e$.

Thus, P_e is satisfied, declare all lower R unsatisfied.

Verification

Lemma 1. $\lim_{s} x(e, s) = x(e)$ exists for all *e*.

Proof. By induction on e. Suppose there exists a stage s_0 such that for all $\hat{e} < e$ $\lim_{s} x(\hat{e}, s) = x(\hat{e})$ exists and is attained by s_0 .

Then after stage s_0 only R_e and P_e can move x(e,s). R_e and P_e , each taken separately, after s_0 acts at most once and is met. Therefore $(\exists \tilde{s} > s_0)(x(e, \tilde{s}) = \lim_s x(e, s))$.

Notation. Define $\tilde{A} = A \cap M^0$, $\tilde{\tilde{A}} = A \cap M^1$.

Lemma 2. $\tilde{A} \equiv_{tt} \tilde{\tilde{A}}$.

Let us prove that $\tilde{A} \equiv_n \tilde{\tilde{A}}$ (where $\tilde{A} = A \cap M^0$, $\tilde{\tilde{A}} = A \cap M^1$). We must construct the function g_0 which *tt*-reduces \tilde{A} to $\tilde{\tilde{A}}$ and the function g_1 which *tt*-reduces $\tilde{\tilde{A}}$ to \tilde{A} .

In this case there would exist recursive functions \tilde{g}_0, \tilde{g}_1 such that $A \leq_u \tilde{\tilde{A}}$ by function \tilde{g}_0 and $A \leq_u \tilde{A}$ by function \tilde{g}_1 , because M^0, M^1 are recursive sets. We will construct the functions g_0, g_1 according to the following considerations.

Construction of g_0 : We shall indicate how to compute $g_0(x)$ for any x.

There are three cases to consider:

 π (a) = a

$$\begin{array}{ll} \text{if} & (\exists \ e)(\exists \ k) \ (x = id(M_{e,2k})(0)), & \text{then} & \text{define} \\ g_0(x) = code << id(M_{e,2k+1}) \ (0), id(M_{e,2k+1}) \ (1), \dots, \\ id(M_{e,2k+1}) \ (p+q) >, \alpha_1 > \\ (\text{where} \ h(e) = (e_0, e_1, e_2, e_3, e_4), \ \pi_1(e_4) = p_{e_1}, \end{array}$$

$$\mathcal{A}_{2}(e_{4}) = q_{e_{4}};$$

$$\alpha_{1}(x_{0}, x_{1}, \dots, x_{p_{e_{4}} + q_{e_{4}}}) = \begin{cases} 0, \text{ if } x_{0} = x_{1} = \dots = x_{p_{e_{4}} + q_{e_{4}}} = 0; \\ 1, \text{ otherwise.} \end{cases}.$$

ii) If $(\exists e)(\exists k > 0) (x \in M_{e,2k}^*)$, then find z such that $x = id(M_{e,2k}^*)(z)$.

Now define $g_0(x) = code \leq id(M_{e,2k+1}^*)(z), >, \alpha_2 >$, where $\alpha_2(x) = x$ for all $x \in \{0,1\}$.

iii) If
$$(\forall e) (\forall k) (x \notin \{id(M_{e,2k})(0)\} \bigcup M_{e,2k}^*)$$
, then

find z such that $x = id(M_{e,2k})(z)$. Now define

$$\begin{split} g_0(x) &= code \triangleleft id(M_{e,2k+1})(z) \triangleleft, \alpha_2 \triangleleft, \text{ where} \\ \alpha_2(x) &= x \text{ for all } x \in \{0,1\} \,. \end{split}$$

Construction of g_1 : We shall indicate how to compute $g_1(x)$ for any x.

There are two cases to consider:

i) If $(\exists e)(\exists k)(x \in M_{e,2k+1}^*)$, then find z such that $x = id(M_{e,2k+1}^*)(z)$. Now define

 $g_1(x) = code << id(M_{e,2k}^*)(z) >, \alpha_2 >, \text{ where } \alpha_2(x) = x$ for all $x \in \{0,1\}$.

ii) If $(\forall e)(\forall k) \ (x \notin M^*_{e,2k+1})$, then find z such that $x = id(M^*_{e,2k+1})(z)$. Now define

 $g_1(x) = code \lt id(M_{e,2k})(z) >, \alpha_2 >, \text{ where } \alpha_2(x) = x$ for all $x \in \{0,1\}$.

The functions g_0 , g_1 satisfy the abovementioned requirements.

Lemma 3. A is not *btt* -mitotic.

As mentioned above, $(\forall e)$ there exists a stage s_0 such

that $(\forall s \ge s_0) (x(e, s_0) = x(e, s)).$

For each e case a) or case b) takes place:

a) $(\neg \exists s \ge s_0) ((Y_e, Z_e, \vartheta_e, \psi_e, j_e))$ is *btt* -threatening A through x(e, s) at stage s). Therefore, the non-*btt* -mitotic condition of order e is satisfied for A.

b) $(\exists s \ge s_0) ((Y_e, Z_e, \vartheta_e, \psi_e, j_e) \text{ is } btt \text{ -threatening } A$ through x(e, s) at stage s).

In this case the follower x(e, s) will be put into A and non-*btt* -mitotic condition of order e will be satisfied. Thus, set A is non-*btt* -mitotic.

Lemma 4. A is hypersimple.

For each \hat{e} there exists s_0 such that

 $(\forall i \le \hat{e})(\forall s \ge s_0) \left(x(i, s_0) = x(i, s) = x(i) \right).$

So for each \hat{e} there exists s_0 such that

 $(\forall i \le \hat{e})(\forall s \ge s_0) \left(l(i, s_0) = l(i, s) = l(i) \right).$

Therefore, for each \hat{e} there exists s_0 such that $(\forall s \ge s_0)$

$$\left(\bigcup_{i=0}^{l(\hat{e},s_{0})} (M_{i,2i}^{*} \bigcup M_{i,2i+1}^{*}) = = \bigcup_{i=0}^{l(\hat{e},s)} (M_{i,2i}^{*} \bigcup M_{i,2i+1}^{*}) = \bigcup_{i=0}^{l(\hat{e})} (M_{i,2i}^{*} \bigcup M_{i,2i+1}^{*})\right).$$

For each \hat{e} there exists s_0 such that $(\forall s \ge s_0)$ $assoc(\hat{e}, s_0) = assoc(\hat{e}, s) = assoc(\hat{e})$.

Also, for each \hat{e} there exists s_0 such that $(\forall s \ge s_0)$ $\bigcup_{i=0}^{\hat{e}} assoc(i, s_0) = \bigcup_{i=0}^{\hat{e}} assoc(i, s) = \bigcup_{i=0}^{\hat{e}} assoc(i).$ Let φ_e be total function and $(\forall u, v)(u \ne v) \Rightarrow D_{\varphi_e(u)} \cap D_{\varphi_e(v)} = \emptyset$. Then $(\exists m)(\forall y, z)[(z \in D_{\varphi_e(m)} \& y \in \bigcup_{i=0}^{e} assoc(i) \cup \bigcup_{i=0}^{l(e)} (M_{e,2i}^* \cup M_{e,2i+1}^*)) \Rightarrow z > od(y)]]$. Therefore, there exist m_0, s_0 such that $(\forall z)(z \in D_{\varphi_{e,s_0}(m_0)} \Rightarrow z > od(y))$ for all y such that $y \in \bigcup_{i=0}^{e} assoc(i, s_0) \cup \bigcup_{i=0}^{l(e)} (M_{e,2i}^* \cup M_{e,2i+1}^*)$ and Case 2 takes place at stage s_0+1 . So $D_{\varphi_e(m_0)}$ is included in A at stage s_0+1 . Thus P_e is met. \Box

REFERENCES

- R.G. Downey and M. Stob, "Splitting theorems in recursion theory", Ann. Pure Appl. Logic, pp. 1–10665, 1993.
- [2] A.H. Lachlan, "The priority method", Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol.13, pp. 1–10, 1967.
- [3] R. Ladner, "Mitotic Enumerable Sets", *The Journal of Symbolic Logic*, vol. 38, N. 2, pp. 199–211, June 1973.
- [4] H. Rogers, *Theory of recursive Functions and effective Computability*, McGraw-Hill Book Company, 1967.
- [5] R.I. Soare, "The infinite injury priority method", *The Journal of Symbolic Logic*, vol. 41, N. 2, pp. 513–530, June 1976.
- [6] R.I. Soare, *Recursively Enumerable Sets and Degrees*, Springer-Verlag, 1987.