
A Multi-User and Multi-Purpose CA Simulator

Hayk E. Nahapetyan
IIAP, National Academy of

Sciences of Armenia
Yerevan, Armenia

e-mail:
hayknahapetyan@yahoo.com

Jean-Pierre Jessel
IRIT - University of Toulouse

Toulouse, France

e-mail: jessel@irit.fr

Suren S. Poghosyan
IIAP, National Academy of

Sciences of Armenia
Yerevan, Armenia

e-mail: psuren55@yandex.ru

Yuri H. Shoukourian
IIAP, National Academy of

Sciences of Armenia
Yerevan, Armenia

e-mail: shouk@sci.am

ABSTRACT
In this paper, a software package for cellular automata
simulation, 2D/3D visualization with a shared work
support system was introduced, that was designed con-
sidering the needs of researchers in both local and vir-
tual laboratories. As an example of cellular automata,
abelian sandpile model has been chosen. An appro-
priate software package has been developed using Mi-
crosoft .Net and C# enabling users to work at the same
time on the same models independent of the geograph-
ical location of users within the public network.

Keywords
CA, ASM, .Net, C#, multi-user, simulation, visualiza-
tion

1. INTRODUCTION
Cellular automata (CA) are discrete models studied
in computability theory, mathematics, physics, com-
plexity theory, theoretical biology and microstructure
modeling. The concept of self-organized criticality was
first introduced by Bak, Tang and Wiesenfeld in 1987
[1], and gave rise to growing interest in the study of
self-organizing systems. Bak et al. argued that in
many natural phenomena, the dissipative dynamics of
the system is such that it drives the system to a critical
state, thereby leading to ubiquitous power law behav-
iors. This mechanism has been invoked to understand
the power law distributions observed in turbulent flu-
ids, earthquakes, distribution of visible matter in the
universe, solar flares and surface roughening of grow-
ing interfaces. The Sandpile models, being a class of
cellular automata, are among the simplest theoretical
models which exhibit self-organized criticality. A spe-
cial subclass of interest consists of so called Abelian
sandpile models (ASM). The Abelian property means
that the final stable state of the CA is independent of
the order in which the updates of cells are carried out.
This property plays a key role during the numerical,
as well as analytical studies of the ASM [[2], [3], [4]].
Many scientists and students previously presented re-
search works on various types of CA, included ASM,
and provided the relevant modeling and simulation [5].

Undoubtedly, it is vital for researchers to have tools
for simulating the models under consideration. For
this purpose, software solutions with appropriate func-
tionality are required to visualize the models, also to
perform simultaneous changes with provision of get-
ting and viewing the results. Besides, the solution
should provide logging the changes made during the
model exploration; introduce required attributes for
accounting each change, as well as memorize the model
current state for further investigation. Researchers in
virtual laboratories are in need of sharing and process-
ing the same models at the same time independent of
the team members geographical locations. There are
a number of software solutions developed to meet the
researchers needs.
For this purpose, NetLogo [6] can be selected as an ap-
propriate development environment supporting multi-
agent programmable modeling with provision of sim-
ulation and visualization of discrete models and cel-
lular automata. NetLogo has its own programming
language based on Lisp which allows users to create
and develop their own models. Besides, Net Logo pro-
vides the researchers to work on the same model at
the same time within local network (See Fig. 1).

Figure 1: Sandpile 3D simulation and visualization
from NetLogo library

Note that to obtain a 3D visualization, Wolfram Math-
ematica or MatLab can be used, meanwhile they do
not support a shared work. Studies were conducted
on the problem of information sharing, like the one
introduced in [[7]] which presents a research on distri-
bution and stream of large-scale 3D data in an efficient
way. There are also studies regarding different imple-
mentations of collaborative virtual environments, as
given in [[8]], where the importance of awareness and
communication in collaborative virtual environments
are evaluated. Along with the research done before,
still there is a need for tools to merge the studies con-
ducted, also to support modeling; simulation; 2D/3D
visualization; access and availability aiming at pro-
vision of working on the same models within global
networks (collaborative work).

2. DISTRIBUTED SIMULATION CON-
TEXT (AND STATE OF THE ART)

As an example of cellular automata ASM has been
chosen. CA simulator (See Fig. 2) supports 2D/3D
visualization along with model rotation and zooms in-
/out possibilities. For creating a new model, the user
selects ”File” from the top panel, chooses the ”New
Sandpile Model” option, and then inserts a size for
the parameter n. Changes, such as adding grains, are
made by selecting ”Edit”, and then ”Add Grain” on
the top panel (See Fig. 3). It is possible to add as
many grains as it is required to a node with the given
coordinates or with a layer selected. Microsoft .Net
implements a strategy for web services to connect in-
formation; people; systems, and devices through soft-
ware, thus making easier sharing and using the in-
formation between multiple websites; programs, and
computers. Also, it is developed to establish client-
server-client connections and to implement working on
shared models. To proceed with sharing the model,
user starts broadcasting from the top panel ”Broad-
casting”, and then selects ”Start Broadcasting” by or-
dering the name of the channel. Meanwhile,the other
users open the channels list from the top panel ”Broad-
casting”; select the ”Connect to Chanel (See Fig. 4),
and then choose the desired channel from the list. A
prominent advantage of the software is that it provides
simulation of all changes made during the model ex-
ploration, even in case of users lateness. Besides, ac-
counting of attributes is implemented for each change
in state, such as: average/layer/critical solidities; the
model stability/non stability; belonging to recurrent
states, count of nodes of the same height, etc (See
Fig. 5).

Figure 2: CA simulator environment on the example
of ASM

Figure 3: Dialog for adding grain

Figure 4: Dialog of channels’ list

Figure 5: Attributes

3. SANDPILE MODEL
Consider an undirected graph G = (V,E) described
with the set of vertices V = {v1, v2, . . . , vN} and the
set of edges E. Each vertex vi ∈ V is assigned a vari-
able hi which takes integer values and represents the
height of the sand at that vertex. hmax

i denotes the
maximal allowed height for the vertex vi in the graph
G. For a d-dimensional lattice we take hmax

i = 2d+ 1.
CT denotes the set of heights hi which determines the
configuration of the system at a given discrete time
T . A configuration is called stable, if all heights sat-
isfy hi < hmax

i . The vertex vi is called closed, if
hmax
i = deg(vi), where deg(vi) indicates degree of vi.

The dynamics of the system is defined by the following
rules. Consider a stable configuration CT at a given
time T . We add a grain of sand at a random vertex
vi ∈ V by setting hi to hi +1 (we assume that the ver-
tex is chosen randomly with a uniform distribution on
the set V). This new configuration, if stable, defines
CT+1. If hi ≥ hmax

i , then the vi becomes unstable and
topples losing hmax

i grains of sand, while all neighbors
of vi receive one grain. Note that if the vertex is open,
then the system loses grains. During the toppling of
the closed vertices, the number of grains is conserved.
Note also that toppling of a vertex may cause some
of its neighboring vertices to become unstable. In this
case those vertices also topple according to the same
toppling rule. Once all unstable vertices are toppled,
a new stable configuration CT+1 is obtained. If the
finite connected graph G has at least one open vertex,
then all vertices become stable after finite number of
topplings. Moreover, the new stable configuration is
independent of the toppling order. Therefore, the dy-
namics is well defined. Let âi be an operator, which
acts on sandpile configurations and adds a grain at

vertex i. It can be easily be shown that âiâj = âj âi.
This is the reason why the sandpile model is called
Abelian.

4. APPLICATION
As already mentioned, CA simulator was developed
using .Net and C#. To facilitate the collaborative work
in the global network, Microsoft Azure has been used.
From the developers view point, the CA simulator may
be divided into three modules: ”Visualization”; ”Lo-
cal Simulation” and ”Service-client Architecture”. In
order to visualize the model zooms in/out and provide
rotation, .Net’s native libraries have been used (See
Fig. 6).

Figure 6: Visualization class diagram

Within the ”Local Simulation” module, a GuiHelper
class has been designed to provide the models creation;
saving and loading; grains adding and toppling, as well
as attributes counting, as follows:

public stat ic class GuiHelper
{
event EventHandler GrainAdded ;
Viewport3D mainViewPort ;
int s i z e ;
L i s t<In t e rac t i v eSphe re> po i n t s ;
L i s t<In t e rac t i v eSphe re> Points

// I n i t i a l i z e 3D view
public stat ic void I n i t (Viewport3D vp) ;

//Creates model wi th g iven s i z e s
public stat ic void CreateModel (S i z e s i z e) ;

//Draws Sandpi l e model
public stat ic void DrawSandpileModel () ;

//Add grain on Sandpi l e model
public stat ic void AddGrain (Pos i t i on pos) ;

//Adds gra in from v i s u a l a spec t s
private stat ic void addGrainOnVertex

(In t e r a c t i v eSphe r e po int) ;

//Returns co l o r regarded to gra ins count
private stat ic Brush GetColorByWeight

(int weight) ;

#reg i on F i l e / St r ing IO

//Save model in f i l e
public stat ic void WriteToFile () {}

//Load model from f i l e
public stat ic void LoadFromFile (){}

#endreg ion

}

Within the ”Service-client Architecture” module, we
have a BroadcastingHelper class which includes es-
sential functions to enable the broadcaster-subscriber
connection, and a SeService class which implements
the ISeService interface. The logic behind is to pro-
vide for a broadcaster to subscribe itself the same
channel in order to get changes from other users. The
channel keeps the whole information about changes
made by all subscribers. Meanwhile ,when a new user
starts to listen to that channel, he/she not only gets
up-to-date knowledge of the model, but also he/she
gets provided with all the changes made since the
moment of broadcasting. For the channels’ database,
SQLite has been chosen.

public stat ic class Broadcast ingHelper
{
public stat ic long Se l fChanne l Id ;
public stat ic long Subscr ibedChannelId ;
private stat ic long LastAct ionId ;
private stat ic Timer t imer ;
private stat ic ActionModel l o c k e r ;
public stat ic EventHandler<> ChannelClosed ;

// S ta r t s to l i s t e n to the g iven channel
public stat ic void ListenChannel

(ChannelModel channel) ;

//Disconnects from channel i f i t ’ s c l o s ed
stat ic void t imer Elapsed

(object sender , ElapsedEventArgs e)

//Ends broadcas t ing
public stat ic void EndBroadcasting () ;

//Disconnects from channel
public stat ic void DisconnectFromChannel () ;

public interface I S eSe rv i c e
{
[Operat ionContract]
long Star tBroadcas t ing (string name) ;

[Operat ionContract]
void EndBroadcasting (long id) ;

[Operat ionContract]
void AddAction (long channelId ,

ActionType type , string data) ;

[Operat ionContract]
ActionModel GetNextAction (long channelId ,

long l a s tAc t i on Id) ;

[Operat ionContract]
L i s t<ChannelModel> GetActiveChannels () ;
}

As already mentioned, CA simulator has been created
on the example of ASM. There are two main ASM re-
lated functions: the DrawSandpileModel() which
provides visualization of changes in already created
model for ASM vision, and the AddGrain(Position

pos) which supports changes performed by the user
on an ASM model. It is quite easy to generate an-
other CA model simply by manipulating the visual-
ization and model modification functions. In order to
make it a new CA available within a global network,
a fewl functions of the ISeService interface should
be adapted to the new CA model described within
the SeService class. The sources of the CA simula-
tor can be found in Bitbucket under https://nhayk@

bitbucket.org/nhayk/ca_simulator.git link.

5. CONCLUSION
In this paper, a software package, namely, ”CA Simu-
lator”, for collaborative work implementation has been
presented. The goal of the CA Simulator is to provide
joint research of models under consideration. Features
developed currently, are: simulation of ASM; visual-
ization within 2D and 3D space; shared work on the
same model at the same time within global networks;
models’ attributes counting. The concept of the mul-
tiuser simulator was introduced and implemented in
a way to make the solution available and fitting to
any other type of cellular automata. The solution pre-
sented is easily reproducible. Perspectives on the work
will be outlined in the near future in order to make
the simulator more user-friendly, as well as to increase
its usability and scalability. Enhancements in visual-
ization techniques will be implemented to make the
simulator applicable for larger graphs.

6. ACKNOWLEDGEMENT
The authors are grateful to Dr. V. Poghosyan and
Dr. Y. Alaverdyan for important discussions and crit-
ical remarks at all stages of the work. This work was
supported by the State Committee of Science MES
RA,in the frames of the research project No. 16YR-
1B008 and Erasmus Project Armnie/ KA1 Mobilit in-
ternationale de crdits/Appel 2017 (Nr. 2017-1-FR01-
KA107-036342).

REFERENCES
[1] P. Bak, C. Tang and K.

Wiesenfeld,”Self-organized criticality: An
explanation of the 1/f noise”,Phys. Rev. Lett.,
vol.59, no. 4, pp. 381384, 1987.

[2] V. S. Poghosyan, S. Y. Grigorev, V. B. Priezzhev
and P. Ruelle, , ”Pair correlations in the sandpile
model: A check of logarithmic conformal field
theory”, Phys. Lett. B, vol. 659, pp. 768772, 2008.

[3] Su. S. Poghosyan, V. S. Poghosyan, V. B.
Priezzhev and P. Ruelle, ”Numerical study of
correspondence between the dissipative and
fixed-energy Abelian sandpile models”, Phys.Rev.
E, 84, 066119, 2011.

[4] V.S. Poghosyan, S.S. Poghosyan and H.E.
Nahapetyan, “The Investigation of Models of
Self-Organized Systems by Parallel Programming
Methods Based on the Example of an Abelian
Sandpile Model”, Proc. CSIT Conference 2013,
Yerevan Armenia, Sept. 23-27, pp. 260-262.

[5] Hayk E. Nahapetyan, Suren S. Poghosyan,
Vahagn S. Poghosyan and Yuri H. Shoukourian,
“The Parallel Simulation Method for
d-dimensional Abelian Sandpile Automata”,
Mathematical Problems of Computer Science 46,
117125, 2016.

[6] Seth Tisue, Uri Wilensky, “NetLogo: A Simple
Environment for Modeling Complexity”,
International Conference on Complex Systems,
Boston, May 1621, 2004.

[7] Caroline Desprat, Jean-Pierre Jessel, Herv Luga.
“3DEvent: a framework using event-sourcing
approach for 3D web-based collaborative design in
P2P.” International Conference on Web3D
Technology (Web3D 2016), Anaheim, CA,
22/07/16-24/07/16, ACM, p. 73-76, july 2016.

[8] Thi Thuong Huyen Nguyen, Thierry Duval, “A
Survey of Communication and Awareness in
Collaborative Virtual Environments”, 2014
International Workshop on Collaborative Virtual
Environments (3DCVE), Mar 2014, Minneapolis,
United States. IEEE, 2014.

https://nhayk@bitbucket.org/nhayk/ca_simulator.git
https://nhayk@bitbucket.org/nhayk/ca_simulator.git

	Introduction
	Distributed simulation context (and state of the art)
	Sandpile model
	Application
	Conclusion
	ACKNOWLEDGEMENT

