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ABSTRACT
A proper edge-coloring of a graph G is a mapping α :
E(G) → N such that α(e) 6= α(e′) for every pair of ad-
jacent edges e, e′ ∈ E(G). A proper edge-coloring of a
graph G with colors 1, . . . , t is called a complete t-edge-
coloring if for every pair of colors i and j, there are two
edges with a common vertex, one colored by i and the
other colored by j. The largest value of t for whichG has
a complete t-edge-coloring is called the achromatic index
ψ′(G) of G. In this paper we study the achromatic index
of complete and complete bipartite graphs. In partic-
ular, we prove that for any m,n ∈ N, ψ′(Km+n+1) ≥
ψ′(Km,n)+m+n−1. We also prove that for any m,n ∈
N, ψ′(Km,n) ≥ ψ′

(
K m

(m,n)
, n
(m,n)

) (
ψ′
(
K(m,n)

)
+ 1
)
,

where (m,n) is the greatest common divisor of m and
n.
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1. INTRODUCTION

All graphs considered in this paper are finite, undi-
rected, and have no loops or multiple edges. Let V (G)
and E(G) denote the sets of vertices and edges of a
graph G, respectively. The maximum degree of vertices
in G is denoted by ∆(G), the chromatic number of G by
χ(G) and the chromatic index of G by χ′(G). We use
the standard notations Kn and Km,n for the complete
graph on n vertices and the complete bipartite graph,
one part of which has m vertices and the other part has
n vertices, respectively. For a graph G, by L(G) we
denote the line graph of the graph G. The terms and
concepts that we do not define can be found in [3, 7,
17].

A proper t-vertex-coloring of a graph G is a mapping
α : V (G) → {1, . . . , t} such that for any uv ∈ E(G),
α(u) 6= α(v). The chromatic number χ(G) of a graph
G is the smallest value of t for which it has a proper
t-vertex-coloring. A proper t-vertex-coloring of a graph
G is a complete t-vertex-coloring of a graph G if for
every pair of colors i and j, there is an edge uv such
that α(u) = i and α(v) = j. The achromatic num-

ber ψ(G) of G is the largest value of t for which G has
a complete t-vertex-coloring. The achromatic number
of graphs was introduced by Harary and Hedetniemi in
[8]. In [9], Harary, Hedetniemi and Prins showed that
for any graph G if χ(G) ≤ t ≤ ψ(G), then G has a
complete t-vertex-coloring. In general, it is known that
the problem of determining of the achromatic number
is NP -complete for bipartite graphs, cographs, interval
graphs, and even for trees [1, 6, 15]. The achromatic
numbers of graph operations were considered by Hell
and Miller in [10], where the authors obtained some
lower bounds for the achromatic number of direct prod-
ucts of graphs.

A proper edge-coloring of a graph G is a mapping α :
E(G) → N such that α(e) 6= α(e′) for every pair of
adjacent edges e, e′ ∈ E(G). A proper edge-coloring of
a graph G with colors 1, . . . , t is called a complete t-
edge-coloring if for every pair of colors i and j, there
are two edges with a common vertex, one colored by
i and the other colored by j. The largest value of t
for which G has a complete t-edge-coloring is called the
achromatic index ψ′(G) of G. Clearly, for any graph
G, ψ′(G) = ψ(L(G)). The problem of determination
of the achromatic index of the complete graph Kn was
first considered by Bouchet [2], who proved that there
is an intimate connection between this parameter and
the existence of finite projective planes.

Theorem 1. If q is odd and n = q2 + q + 1, then
ψ′(Kn) = q · n if and only if a finite projective plane
of order q exists. Moreover, if ψ′(Kn) = q · n, then
the vertices covered by each color class in any complete
ψ′(Kn)-edge-coloring form the lines of a finite projective
plane with the vertices of Kn as points.

The achromatic index of complete graphs was also con-
sidered by Jamison [14]. In [14], the author obtained
some lower and upper bounds for the achromatic in-
dex of complete graphs. He also showed that ifn > 4,
then ψ′(Kn+2) ≥ ψ′(Kn) + 2. Moreover, Jamison [14]
showed that the achromatic index of complete graphs

ψ′(Kn) grows asymptotically like n
3
2 . The achromatic

index of complete bipartite graphs was first considered
by Chiang and Fu [4]. In [4], the authors proved that
for any m,n ∈ N, the following upper bound holds:
ψ′(Km,n) ≤ max1≤k≤m min{bmn

k
c, k(m+n−1)−k2+1}.

In [4], Chiang and Fu also proved the following lower
bound for ψ′(Km,n).



Theorem 2. For any positive integers m,n ≥ 2,

ψ′(Km,n) ≥


m+ n− 1, if n > m = 2

or m = n > 2,

2n−
⌈

n
m−1

⌉
, if n > m > 2.

In the same paper it was proved that ψ′(K2,n) = n+ 1
if n ≥ 3, and ψ′(K3,3) = 5, ψ′(K3,n) =

⌊
3n
2

⌋
if n ≥

4. In [11, 12, 13], the achromatic indices ψ′(K4,n) and
ψ′(K5,n) were determined. In general, the achromatic
indices of complete and complete bipartite graphs are
unknown. Some other results on the topic were obtained
in [2, 5, 14]. In [16], the achromatic indices of graph
products were considered. In particular, the authors
proved that for any m,n ∈ N, the following lower bound
holds: ψ′(Km·n) ≥ ψ′(Km)+ψ′(Kn)+ψ′(Km) ·ψ′(Kn).

In the present paper we study the achromatic index of
complete and complete bipartite graphs. In particu-
lar, we prove that for any m,n ∈ N, ψ′(Km+n+1) ≥
ψ′(Km,n)+m+n−1. We also prove that for any m,n ∈
N, ψ′(Km,n) ≥ ψ′

(
K m

(m,n)
, n
(m,n)

) (
ψ′
(
K(m,n)

)
+ 1
)
.

2. THE MAIN RESULTS

We first prove the following lemma.

Lemma 3. If for a graph G, ψ′(G) ≥ k · ∆(L(G)),
then for any complete ψ′(G)-edge-coloring of G, each
color is used at least k − 1 times.

Using this lemma we prove the following result on the
achromatic index of complete graphs.

Theorem 4. For any m,n ∈ N, we have

ψ′(Km+n+1) ≥ ψ′(Km,n) +m+ n− 1.

Next we show that there is a connection between the
achromatic indices of complete and complete bipartite
graphs.

Theorem 5. For any n ∈ N, we have

ψ′(Kn,n) ≥ ψ′(Kn) + 1.

Proof. Let V (Kn) = {v1, . . . , vn} and α be a com-
plete ψ′(Kn)-edge-coloring of Kn. Also, let V (Kn,n) =
U∪W , where U = {u1, . . . , un}, W = {w1, . . . , wn} and
E(Kn,n) = {uiwj : 1 ≤ i ≤ n, 1 ≤ j ≤ n}.

Define an edge-coloring β of Kn,n as follows:

1) for every edge vivj ∈ E(Kn), let

β(uiwj) = β(ujwi) = α(vivj);

2) for i = 1, . . . , n, let

β(uiwi) = ψ′(Kn) + 1.

It is not difficult to see that β is a complete (ψ′(Kn) +
1)-edge-coloring of Kn,n. Thus, ψ′(Kn,n) ≥ ψ′(Kn) +
1.

Using the previous theorem we prove the following re-
sults on the achromatic index of complete bipartite graphs.

Theorem 6. For any m,n ∈ N, we have

ψ′(Km,n) ≥ ψ′
(
K m

(m,n)
, n
(m,n)

) (
ψ′
(
K(m,n)

)
+ 1
)
.

Theorem 7. For any n ∈ N, we have

ψ′(Kn,n) ≥ maxd|n(d 6=1)

{
ψ′
(
Kn

d
,n
d

)
(ψ′ (Kd) + 1)

}
.
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