On the Achromatic Index of Complete Graphs

Narek H. Hovsepyan

YSU Information Technologies Educational and Reasearch Center, Yerevan State University, 0025, Yerevan, Armenia

e-mail: narek.hnh@gmail.com

ABSTRACT

A proper edge-coloring of a graph G is a mapping α : $E(G) \to \mathbb{N}$ such that $\alpha(e) \neq \alpha(e')$ for every pair of adjacent edges $e, e' \in E(G)$. A proper edge-coloring of a graph G with colors $1, \ldots, t$ is called a *complete t-edgecoloring* if for every pair of colors *i* and *j*, there are two edges with a common vertex, one colored by *i* and the other colored by *j*. The largest value of *t* for which G has a complete *t*-edge-coloring is called the *achromatic index* $\psi'(G)$ of G. In this paper we study the achromatic index of complete and complete bipartite graphs. In particular, we prove that for any $m, n \in \mathbb{N}, \ \psi'(K_{m+n+1}) \geq \psi'(K_{m,n}) + m + n - 1$. We also prove that for any $m, n \in \mathbb{N}, \ \psi'(K_{m,n}) + 1$, where (m, n) is the greatest common divisor of *m* and *n*.

Keywords

Achromatic number, achromatic index, complete edgecoloring, complete graph, complete bipartite graph.

1. INTRODUCTION

All graphs considered in this paper are finite, undirected, and have no loops or multiple edges. Let V(G)and E(G) denote the sets of vertices and edges of a graph G, respectively. The maximum degree of vertices in G is denoted by $\Delta(G)$, the chromatic number of G by $\chi(G)$ and the chromatic index of G by $\chi'(G)$. We use the standard notations K_n and $K_{m,n}$ for the complete graph on n vertices and the complete bipartite graph, one part of which has m vertices and the other part has n vertices, respectively. For a graph G, by L(G) we denote the line graph of the graph G. The terms and concepts that we do not define can be found in [3, 7, 17].

A proper t-vertex-coloring of a graph G is a mapping $\alpha : V(G) \rightarrow \{1, \ldots, t\}$ such that for any $uv \in E(G)$, $\alpha(u) \neq \alpha(v)$. The chromatic number $\chi(G)$ of a graph G is the smallest value of t for which it has a proper t-vertex-coloring. A proper t-vertex-coloring of a graph G is a complete t-vertex-coloring of a graph G if for every pair of colors i and j, there is an edge uv such that $\alpha(u) = i$ and $\alpha(v) = j$. The achromatic num-

Petros A. Petrosyan

Institute for Informatics and Automation Problems, National Academy of Sciences of Armenia, 0014, Yerevan, Armenia Department of Informatics and Applied Mathematics, Yerevan State University, 0025, Yerevan, Armenia

e-mail: pet_petros@ipia.sci.am, petros_petrosyan@ysu.am

ber $\psi(G)$ of G is the largest value of t for which G has a complete t-vertex-coloring. The achromatic number of graphs was introduced by Harary and Hedetniemi in [8]. In [9], Harary, Hedetniemi and Prins showed that for any graph G if $\chi(G) \leq t \leq \psi(G)$, then G has a complete t-vertex-coloring. In general, it is known that the problem of determining of the achromatic number is NP-complete for bipartite graphs, cographs, interval graphs, and even for trees [1, 6, 15]. The achromatic numbers of graph operations were considered by Hell and Miller in [10], where the authors obtained some lower bounds for the achromatic number of direct products of graphs.

A proper edge-coloring of a graph G is a mapping α : $E(G) \to \mathbb{N}$ such that $\alpha(e) \neq \alpha(e')$ for every pair of adjacent edges $e, e' \in E(G)$. A proper edge-coloring of a graph G with colors $1, \ldots, t$ is called a *complete* t *edge-coloring* if for every pair of colors i and j, there are two edges with a common vertex, one colored by i and the other colored by j. The largest value of tfor which G has a complete t-edge-coloring is called the *achromatic index* $\psi'(G)$ of G. Clearly, for any graph $G, \psi'(G) = \psi(L(G))$. The problem of determination of the achromatic index of the complete graph K_n was first considered by Bouchet [2], who proved that there is an intimate connection between this parameter and the existence of finite projective planes.

Theorem 1. If q is odd and $n = q^2 + q + 1$, then $\psi'(K_n) = q \cdot n$ if and only if a finite projective plane of order q exists. Moreover, if $\psi'(K_n) = q \cdot n$, then the vertices covered by each color class in any complete $\psi'(K_n)$ -edge-coloring form the lines of a finite projective plane with the vertices of K_n as points.

The achromatic index of complete graphs was also considered by Jamison [14]. In [14], the author obtained some lower and upper bounds for the achromatic index of complete graphs. He also showed that ifn > 4, then $\psi'(K_{n+2}) \ge \psi'(K_n) + 2$. Moreover, Jamison [14] showed that the achromatic index of complete graphs $\psi'(K_n)$ grows asymptotically like $n^{\frac{3}{2}}$. The achromatic index of complete bipartite graphs was first considered by Chiang and Fu [4]. In [4], the authors proved that for any $m, n \in \mathbb{N}$, the following upper bound holds: $\psi'(K_{m,n}) \le \max_{1\le k\le m} \min\{\lfloor\frac{mn}{k}\rfloor, k(m+n-1)-k^2+1\}$. In [4], Chiang and Fu also proved the following lower bound for $\psi'(K_{m,n})$. Theorem 2. For any positive integers $m, n \geq 2$,

$$\psi'(K_{m,n}) \ge \begin{cases} m+n-1, & \text{if } n > m = 2\\ & \text{or } m = n > 2,\\ 2n - \left\lceil \frac{n}{m-1} \right\rceil, & \text{if } n > m > 2 \end{cases}$$

In the same paper it was proved that $\psi'(K_{2,n}) = n + 1$ if $n \geq 3$, and $\psi'(K_{3,3}) = 5$, $\psi'(K_{3,n}) = \lfloor \frac{3n}{2} \rfloor$ if $n \geq 4$. In [11, 12, 13], the achromatic indices $\psi'(K_{4,n})$ and $\psi'(K_{5,n})$ were determined. In general, the achromatic indices of complete and complete bipartite graphs are unknown. Some other results on the topic were obtained in [2, 5, 14]. In [16], the achromatic indices of graph products were considered. In particular, the authors proved that for any $m, n \in \mathbb{N}$, the following lower bound holds: $\psi'(K_{m\cdot n}) \geq \psi'(K_m) + \psi'(K_n) + \psi'(K_m) \cdot \psi'(K_n)$.

In the present paper we study the achromatic index of complete and complete bipartite graphs. In particular, we prove that for any $m, n \in \mathbb{N}, \ \psi'(K_{m,n}) + m + n - 1$. We also prove that for any $m, n \in \mathbb{N}, \ \psi'(K_{m,n}) \geq \psi'\left(K_{\frac{m}{(m,n)}, \frac{n}{(m,n)}}\right)\left(\psi'\left(K_{(m,n)}\right) + 1\right)$.

2. THE MAIN RESULTS

We first prove the following lemma.

Lemma 3. If for a graph G, $\psi'(G) \ge k \cdot \Delta(L(G))$, then for any complete $\psi'(G)$ -edge-coloring of G, each color is used at least k-1 times.

Using this lemma we prove the following result on the achromatic index of complete graphs.

Theorem 4. For any $m, n \in \mathbb{N}$, we have

$$\psi'(K_{m+n+1}) \ge \psi'(K_{m,n}) + m + n - 1.$$

Next we show that there is a connection between the achromatic indices of complete and complete bipartite graphs.

Theorem 5. For any $n \in \mathbb{N}$, we have

$$\psi'(K_{n,n}) \ge \psi'(K_n) + 1.$$

Proof. Let $V(K_n) = \{v_1, \ldots, v_n\}$ and α be a complete $\psi'(K_n)$ -edge-coloring of K_n . Also, let $V(K_{n,n}) = U \cup W$, where $U = \{u_1, \ldots, u_n\}, W = \{w_1, \ldots, w_n\}$ and $E(K_{n,n}) = \{u_i w_j \colon 1 \le i \le n, 1 \le j \le n\}.$

Define an edge-coloring β of $K_{n,n}$ as follows:

1) for every edge $v_i v_j \in E(K_n)$, let

$$\beta(u_i w_j) = \beta(u_j w_i) = \alpha(v_i v_j);$$

2) for i = 1, ..., n, let

$$\beta(u_i w_i) = \psi'(K_n) + 1.$$

It is not difficult to see that β is a complete $(\psi'(K_n) + 1)$ -edge-coloring of $K_{n,n}$. Thus, $\psi'(K_{n,n}) \geq \psi'(K_n) + 1$. \Box

Using the previous theorem we prove the following results on the achromatic index of complete bipartite graphs.

Theorem 6. For any
$$m, n \in \mathbb{N}$$
, we have
 $\psi'(K_{m,n}) \ge \psi'\left(K_{\frac{m}{(m,n)},\frac{n}{(m,n)}}\right)\left(\psi'\left(K_{(m,n)}\right)+1\right)$

Theorem 7. For any $n \in \mathbb{N}$, we have

$$\psi'(K_{n,n}) \ge \max_{d|n(d\neq 1)} \left\{ \psi'\left(K_{\frac{n}{d},\frac{n}{d}}\right) \left(\psi'\left(K_{d}\right)+1\right) \right\}.$$

REFERENCES

- H. Bodlaender, "Achromatic number is NP-complete for cographs and interval graphs", Inform. Proc. Lett. 31, pp. 135-138, 1989.
- [2] A. Bouchet, "Indice achromatique des graphes multiparti complets et reguliers", Cahiers Centre d'Etudes et Recherche Operationnelli 20 (3-4), pp. 331-340, 1978.
- [3] G. Chartrand, P. Zhang, Chromatic Graph Theory, Discrete Mathematics and Its Applications, CRC Press, 2009.
- [4] N.-P. Chiang, H.-L. Fu, "On the achromatic number of the Cartesian product $G_1 \times G_2$ ", Australasian Journal of Combinatorics 6, pp. 111-117, 1992.
- [5] N.-P. Chiang, H.-L. Fu, "The achromatic indices of the regular complete multipartite graphs", *Discrete Math.* 141, pp. 61-66, 1995.
- [6] M. Farber, G. Hahn, P. Hell, D. Miller, "Concerning the achromatic number of graphs", *Journal of Combin. Theory, Ser. B* 40, pp. 21-39, 1986.
- [7] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
- [8] F. Harary, S.T. Hedetniemi, "The achromatic number of a graph", *Journal of Combin. Theory*, *Ser. B 8*, pp. 154-161, 1970.
- [9] F. Harary, S.T. Hedetniemi, G. Prins, "An interpolation theorem for graphical homomorphisms", *Portug. Math.* 26, pp. 453-462, 1967.
- [10] P. Hell, D. Miller, "Achromatic numbers and graph operations", *Discrete Math.* 108, pp. 297-305, 1992.
- [11] M. Hornak, S. Pcola, "Achromatic number of $K_5 \times K_n$ for large n", Discrete Math. 234, pp. 159-169, 2001.

- [12] M. Hornak, S. Pcola, "Achromatic number of $K_5 \times K_n$ for small n", Czechoslovak Math. Journal 53, pp. 963-988, 2003.
- [13] M. Hornak, J. Puntigan, "On the achromatic number of K_m × K_n", in: Graphs and Other Combinatorial Topics, Proc. of the third Czechoslovak Symposium on Graph Theory, Prague, August 24-27, 1982, (M. Fiedler, ed.) Teubner, Leipzig, pp. 118-123, 1983.
- [14] R.E. Jamison, "On the edge achromatic numbers of complete graphs", *Discrete Math.* 74, pp. 99-115, 1989.
- [15] D. Manlove, C. McDiarmid, "The complexity of harmonious coloring for trees", *Discrete Appl. Math.* 57, pp. 133-144, 1995.
- [16] P.A. Petrosyan, A. Mangasaryan, "On the achromatic indices of graph products", in: Proc. of the CSIT Conference, Yerevan, pp. 87-88, 2013.
- [17] D.B. West, Introduction to Graph Theory, Prentice-Hall, New Jersey, 2001.