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ABSTRACT
Real world complex networks may contain hidden struc-
tures called communities or groups. They are com-
posed of nodes being tightly connected within those
groups and weakly connected between them. Detecting
communities has numerous applications in different sci-
ences such as biology, social network analysis, economics
and computer science. Since there is no universally ac-
cepted definition of community, it is a complicated task
to distinguish community detection algorithms as each
of them use a different approach, resulting in different
outcomes. Thus large number of articles are devoted
to investigating community detection algorithms, im-
plementation on both real world and artificial data sets
and development of evaluation measures. In this arti-
cle several state of the art algorithms and evaluation
measures are studied which are used in clustering and
community detection literature. The main focus of this
article is to survey recent work and evaluate them using
artificially generated networks.
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1. INTRODUCTION
In recent years network science gained more attention
with the advent of modern computational machines en-
abling to challenge more complex problems and rapid
increase in the amount of data. Real world networks are
usually represented as undirected, directed or weighted
graphs, composed of nodes and edges, where edges serve
as connections between the nodes. While random graphs
imply an homogeneous degree distribution, that is to
say the probability of having an edge between every two
nodes is the same, real world networks have inhomoge-
neous structure resulting in groupings of nodes being
tightly connected to each other and weakly connected
with nodes from other groups.
This property of real world complex networks is known
to be a community structure, where communities or
clusters are defined as groups of nodes having higher
intra-connectivity (inside the groups) and weak inter-
connectivity (between groups) [1]. The aim of commu-
nity detection is to identify the groups with high con-
centrations using the information encoded in the graph
topology.

Revealing communities in networks proved to have count-
less applications in protein-to-protein interactions from
biology, social network analysis, recommendation sys-
tems from on-line product purchasing, machine learning
problems, etc. Although there is no universally accepted
definition of community, various structural definitions
and scoring functions exist [2] to quantitatively assess
how community-like are the groups of nodes(e.g., con-
ductance, modularity, triangle participation ratio) that
we will describe later.
Modern networks may have up to millions or billions
of nodes and edges which obscures the process of com-
munity detection due to computational issues, however
there are well designed algorithms with low complexity
[1][3] to overcome these obstacles and give promising
outcomes.
The results of the algorithms differ from network to net-
work and it is mandatory to test and compare them on
many networks to make acceptable conclusions. How-
ever the number of large real world networks is limited
and benchmark models such as Lancichinetti Fortunato
Radicchi (LFR) benchmark [4] or the Stochastic Block
Model (SBM) [5] generating networks with community
structure resembling real world networks are used to
overcome the limitations.
Large number of articles are devoted to comparing com-
munity detection algorithms using LFR benchmark [3][4]
so we will only use SBM for our investigation. After
a community detection algorithm is implemented and
graph is partitioned into communities, another research
problem is to analyze how ”good” or ”bad” are the de-
tected communities.
This can be done by comparing the estimated commu-
nity structure with reference structure or ground truth
using external measures or by assessing the quality of
detected communities internally. The aim of this pa-
per is to provide the reader with an overview of the
methods that have been developed for community de-
tection. The paper is organized as follows: In Section 2
we describe the benchmark models, community detec-
tion algorithms and evaluation measures and show some
experimental results in Section 3.

2. COMMUNITY DETECTION
ALGORITHMS AND EVALUATION
MEASURES

Various community detection algorithms have been de-
veloped which differ in terms of complexity and network
types they target (e.g., undirected, directed, weighted,
etc.). The process of community detection is rather sim-
ple in terms of sequential processes being implemented



which are network selection, implementation of an algo-
rithm and evaluation of the final results.

2.1 Real World vs Simulated Network
In recent years with the rapid increase of data collection
various large networks became available. However even
large networks are available, the number of networks
with pre-known community structure or ground truth
is limited. This limitation is overpassed by generating
unlimited networks similar to real networks using the
LFR benchmark and the SBM.
LFR benchmark generates networks with pre- known
community structure where degree and community size
distributions are heterogeneous and power-law. Mixing
parameter µ is used to control the fraction of nodes a
node shares inside and outside the community [4].
SBM is a generative model for random graphs, gener-
ating networks with community structure with prede-
fined number of vertices, community sizes and proba-
bility matrix of intra and inter community edges [5].
These two approaches can be used to generate unlim-
ited benchmark models resembling real world networks
to implement and compare the algorithms and evaluate
the results.

2.2 Algorithms
Solving community detection problems on modern real
world networks can sometimes be much complicated
due to computational complexity as networks may have
large numbers of nodes and edges where exact detection
can be NP-hard problem. Even nowadays distinguishing
between algorithms and characterizing which algorithm
works best on particular network is a hard task. In such
cases heuristics or approximation algorithms are used to
approximately optimize some objective function to de-
tect almost ”real” communities. Despite these barriers,
plenty of successful algorithms exist in the literature,
including those that were initially developed for clus-
ter analysis. These algorithms are mainly classified into
the following categories: modularity-based algorithms,
spectral algorithms, algorithms based on random walks,
label propagation and
information-theoretical measures [1] that we develop in
the next sub-sections.

Algorithms Based on Modularity Optimization
Modularity and other community scoring functions are
characterizing how community-like are the groups of
nodes in the network. Algorithms based on modular-
ity optimization such as Newman’s greedy algorithm [6]
and its updated version by Clauset et. al (Fast Greedy)
[7] join vertices which result in highest increase in mod-
ularity. After iterative process when modularity cannot
be maximized any more, the network is partitioned into
communities. Another popular modularity optimiza-
tion method is Louvain algorithm which initially finds
small communities by optimizing modularity locally and
then aggregating nodes belonging to the same commu-
nity and creating a network whose nodes represent the
communities. This process is iterated until maximum
modularity is reached and a hierarchy of communities
are produced [8].

Algorithm based on eigenvectors of modularity ma-
trix
This algorithm by Newman (Leading Eigenvector) [9]
uses eigenspectrum of modularity matrix. Initially this
algorithm initially creates the modularity matrix and
finds eigenvector of the largest eigenvalue. Finally it la-

bels nodes in corresponding communities knowing the
sign of the elements in the eigenvector.

Random Walks
In general communities in networks have more intra con-
nectivity then inter connectivity. Thus it is expected to
have more edges inside those groups than between them.
When implementing a short random walk, the probabil-
ity that both the starting and ending points will be in
the same group rather than in different groups, is higher.
Algorithms based on random walks like Walktrap [10]
use this idea to detect communities in networks.

Infomap
Infomap is an information theoretic method used to re-
veal community structure in the networks. At the begin-
ning every node is assigned to its own community. Then
nodes are moved to neighboring communities that re-
sults in the largest decrease of the map equation. After
an iterative process when no move results in decrease of
the map equation, network splits into communities [11].

Label Propagation
Unlike other community detection algorithms, label prop-
agation does not optimize any given objective function
and it does not require to have a priori information
about the network structure. Initially every node has
its own label and during an iterative process nodes gain
the label which is frequent in their neighborhood. When
every node has the label that the maximum number of
its neighbors have, algorithm stops, resulting in densely
connected groups. Among discussed algorithms label
propagation is preferred due to its near linear time com-
plexity [12].

2.3 Comparative Evaluation of Algorithms
After a community detection algorithm is implemented
and the network is partitioned into communities, it is
of paramount importance to interpret the results i.e.
to know which algorithm performed well and detected
meaningful communities.
Algorithms can be compared by their performance which
is the time taken to partition the network and by qual-
itatively assessing how ”good” are the derived commu-
nities.
Measures used to assess the quality of detected commu-
nities are divided into two main categories:
- Internal: Evaluating communities internally by using
community scoring functions.
- External: Comparison of communities derived by the
algorithm with reference structure or ground truth.

Internal Measures
Internal measures are used to quantitatively assess how
community-like is the given set of nodes in the network.
As the global definition of community is based on the
idea that it has high connectivity within a group and
weak connectivity with other groups, scoring functions
are based on this intuition. Here we will point out con-
ductance, triangle participation ratio and modularity
with the reason that conductance and triangle participa-
tion ratio give optimal results when identifying ground
truth communities [2] and modularity which is the most
widespread evaluation criteria used in the literature.

Conductance
Conductance is the fraction of total edges that goes out-



side the community and is defined as:

Conductance =
Oc

2Ic +Oc

where Oc and Ic are the number of edges pointing out-
side from community c and the number of edges in c
respectively.
Using conductance as a community goodness metric
Leskovec et.al showed that best possible communities
get less community like when they grow in size [13]. In
their other study while experimenting on 230 large real
world networks, conductance and triangle participation
ratio gave best results in identifying ground truth com-
munities [2].

Triangle participation ratio
Triangle participation ratio is the fraction of nodes that
belong to a triangle and is defined as:

TriangleParticipationRatio =
Tc

Nc

where Tc is the number of vertices that form a triangle
in c and Nc is the number of nodes in c.

Modularity
Modularity is the difference of fraction of the edges that
fall within communities and expected number of edges
in a random graph

Modularity =
1

2M

∑
xy

(Axy −
dxdy
2M

)δ(cx, cy).

Experiments on both real and artificial networks show
that modularity suffers from resolution limit merging
small groups in case of low resolution and splitting large
groups in case of high resolution i.e. missing important
structures in the network [14] and often it is not possible
to eliminate both biases simultaneously.

External Measures

Normalized Mutual Information
Mutual Information (MI) is an information-theoretic
measure that quantifies the mutual dependence between
two random variables. In other terms MI measures how
much information can be obtained about one random
variable through another.
Normalized Mutual Information (NMI) between two ran-
dom variables X and Y is defined as the ratio of mutual
information I(X,Y ) and the average of entropies of X
and Y

NMI(X,Y ) =
2I(X,Y )

H(X) +H(Y )
,

whereH(X) andH(Y ) are the entropies of random vari-
ables X and Y respectively.
Considering X and Y as two different partitions,
NMI(X,Y ) shows the similarity of the two partitions.

Adjusted Rand Index
Adjusted Rand Index is a similarity measure of two dif-
ferent partitions of a network like NMI. Given a set of
n elements S = (d1, d2, ..., dn) and two partitions of S,
X and Y respectively, where X and Y partition S into
different subsets. Adjusted rand index is defined as:

AdjustedRandIndex =
SS +DD

SS + SD +DS +DD

where
SS is the number of pairs of elements in S that are in
the same subset in X and in the same subset in Y .
DD is the number of pairs of elements in S that are in
different subsets in X and in different subsets in Y .
SD is the number of pairs of elements in S that are in
the same subset in X and in different subsets in Y .
DS is the number of pairs of elements in S that are in
different subsets in X and in the same subset in Y .

Purity
Purity is also used to compare two partitions.
Consider X = (x1, x2, ..., xp) and Y = (y1, y2, ..., yq)
to be two random variables representing different parti-
tions of the network, where xp and yq are parts of these
partitions.
Denote Nxp and Nyq number of nodes in xp and yq parts
respectively, Nxp,yq number of nodes in xp ∩ yq and N
number of nodes in the network.
The purity of partition X related to partition Y is de-
fined as

Purity(X,Y ) =
1

N

∑
p

max
q
Nxp,yq .

According to Orman and Labatut, these three common
evaluation measures ignore the network topology [15].
Based on this idea Labatut introduced modified ver-
sions, which enabled to include the topological impor-
tance of the nodes. The idea is based on assigning a
weight to each node by combination of the degree and
community embeddedness.
Tests on artificial networks assume that modified NMI
was able to assess the correspondence with reference
structure in terms of community memberships and topo-
logical properties [16]. Another novel approach was pro-
posed by Rossetti et. al and Zhang. Rossetti et. al used
community precision and community recall, where com-
munity precision quantifies the level of label homophily
between community and ground truth while community
recall quantifies the correspondence between a commu-
nity and ground truth. Unlike NMI, this method works
fast in large networks [17].
Zhang proposed a relative normalized mutual informa-
tion (rNMI) measure which considers statistical signif-
icance of NMI by comparing it with expected NMI of
random partitions. Zhang claims that regular NMI is
affected by errors when the network size is finite and
rNMI overcomes this barrier [18].
In this paper we use modularity to assess the quality of
detected communities by algorithms. We will also mea-
sure effectiveness considering the processing time of the
algorithms in various configurations.

3. RESULTS
We used SBM to generate networks with community
structure, where number of vertices, community sizes
and edge probabilities in communities and between com-
munities are known a priori. In our experiments, gener-
ated networks have 200 nodes and they are grouped into
five equally sized communities. We compared six algo-
rithms using modularity score for different Pout ∈ [0, 1]
and Pin = 1 values, where Pout and Pin represent proba-
bility of edge between communities and in communities
respectively.

Observing more than 300 random models and averaging
the results we noticed that Louvain and leading eigen-
vector algorithms give best results identifying commu-
nities which have high modularity score compared with



other methods (see Fig. 1).
Infomap and Label propagation reach to zero modular-
ity sooner i.e. being unable to find ”good” communities
when Pout increases (See Fig. 1).
In the next stage of our experiments we compared these
algorithms based on the time of detection, using Pout

and the number of vertices in the network N .

Results displayed in Fig. 2 & 3 show that Louvain and
label propagation algorithms remain relatively fast com-
pared with infomap, fast greedy and walktrap, when
the number of vertices in the network and probability
of edge between communities increase.

4. CONCLUSION AND FUTURE WORK
In this paper we surveyed six state of the art commu-
nity detection algorithms.
Stochastic block model was used to generate random
networks to compare the algorithms based on modular-
ity score, detection time and network size.
In future we plan to include real world networks with
ground truth communities, use more internal and ex-
ternal evaluation measures to assess both the quality of
detected communities and correspondence with ground
truth as well as more traditional algorithms such as Sp-
inglass and Girvan-Newman algorithm.
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