
Developing Node.Js - MPI Bridge for Cluster Computational
Environment

Mikayel Gyurjyan
Institute for Informatics and Automation

Problems of NAS RA
e-mail:

mikayelg@gmail.com

Zaven Naghashyan
Institute for Informatics and Automation

Problems of NAS RA
e-mail:

znaghash@gmail.com

ABSTRACT
Cluster job management system was designed for organizing
parallel access to the cluster by different users. The
management and efficient exploitation of clusters among
users, applications and data continue to be a time-
consuming and challenging task. In many Linux-based
clusters the jobs should be designed as programs that utilize
MPI (message passing interface). MPI became de facto
industry standard for the parallel computing environments.
The most common programming languages that use MPI are
C and C++.

One of the main limitations of the system is the fact, that
programs should be implemented using C++ programming
language. The number of engineers with deep knowledge of
C++ during the last decade stopped to grow in a way it was
before.

Modern programming trends made JavaScript as one of the
most popular languages for majority of programmers.
Initially JavaScript was designed to be used within web
browsers. Node.Js is an environment that allows the
programs written in JavaScript to run in the server
environment. It supports special APIs that allow JavaScript
programs to communicate with the operating system and
external resources. Those APIs are mostly designed as
asynchronous functions.

MPI-Node.js Bridge is designed and implemented to allow
Node.Js programs to be executed within Arm-cluster
computational environment and utilize MPI functionality
that allows the simplicity and efficient use of the available
computing resources, as well as, making the system usable
for vast majority of new users that have JavaScript
programming skills.

Keywords
Cluster, job management system, MPI, Node.Js.

1. INTRODUCTION
Cluster jobs management system was designed and
implemented for organizing parallel access to the cluster by
different users. It is used for executing special tasks
(hereafter called Jobs) provided by the users. The main 2
goals of the system were to simplify access of users to the
cluster and optimal usage of the cluster resources by the user
jobs that can run at the same time. These two fields are
controlled by two different parts of the system: Web-based
User Interface and the Job Scheduler. A special
Administrative Panel was designed and developed to
configure and control the system main functions.

The system provides a comfortable interface to users, for
reservations and scheduling shared computational resources.
It also keeps history of job executions per user.

Using the web-based interface users can see detailed
information on a particular Job. The system also allows
scheduling jobs by performing the following actions:

1. Select the required number of cores. There are
limitations on number of cores that can be reserved
depending on the role the users have in the system.

2. Indicate the start-end dates to run the Job
3. Select a free period of time to run the Job

according to the availability of the cores.

The scheduler module of the system controls the jobs
according to preset schedule. This allows balancing the load
and minimizing the impact of jobs on each other. It also
gathers statistics about how jobs are running. It is designed
to be as portable and diverse as possible, and, therefore, uses
many common applications that are available on a variety of
computing platforms. It is easily configured with the well-
known PBS (Portable Batch System) [1-2], Condor, Torque
queuing systems [3].

One of the main limitations of the system is the fact, that
programs should be implemented using C++ programming
language. The number of engineers with deep knowledge of
C++ during the last decade stopped to grow in a way it was
before. Nowadays vast majority of researchers and software
developers use modern technologies for the programming
needs. JavaScript is one of the most used programming
languages in the world [4, 5, 6].

Possibility to have JavaScript-based programs run within the
cluster environment could dramatically increase the number
of potential users and tasks.

In the current article we consider the possibility to use
JavaScript and Node.js server side environment to
implement programs that can be used in the job management
system.

2. ADMINISTRATIVE WEB-BASED
INTERFACE
The Web-based interface supports a hierarchical structure of
users that belong to groups. Every group is associated with a
project. These associations are important for regulating
cluster accounting. Projects can have more than one user
performing work towards the project, and have their hours be
counted under the same project. Administrator assigns a cost
unit for each project, which allows sharing the given cost
unit between the users of the project or group.

There are various cost units calculation variants depending
on the project purposes and the roles of users in projects. For

example, a university student will have a lower cost unit than
a commercial project.

A few administration interfaces have been developed:

• User Administration View. The administrator of the
system can add or change the parameters of the system
users. Strict checking is done at job-submission time,
and if the user does not have an entry made in the
system the job will not be permitted to enter the queue.
The passwords do not have to match, and it is actually
preferable to have different passwords. The system
user account is used only to protect access to the user's
statistics on the web statistical engine. It has no
correlation to the authentication mechanism on the
cluster itself.

• Cost Administration View. The administrator can edit
or create different types of cost structures for
computational projects. It consists of the following
components: Description (A plain-text identifier for
the administrator's purpose), Normal Cost Cluster Unit
(the price per cost unit used for a normal, prepaid or
preallocated cost unit balance), Overrun Cost Cluster
Unit (the price per cost unit when a particular project's
job runs over the prepaid balance, or is already in a
negative balance).

• Scheduling Administration View. It supports basic
scheduling capability. It allows administrators to
customize the existing policies and define new
scheduling policies for the cluster. It can be used to
extend the existing scheduling policies or implement
custom scheduling policies.

• Project Administration View. Here you can edit or
create your projects. This is the project name that users
should enter on the command line, when submitting
the job. The project owner is a user that can alter some
aspects of the project profile as well as see detailed
statistical information regarding the overall project.
Since the project owner only has to be a user with a
username and password, they do not have to be a user
on the computational system. This feature is useful for
facilities that project management team members
have. The administrator must assign a particular cost
group to the particular project. They can enable or
disable the project's ability to run in overrun mode.
The administrator or project owner can provide access
to a particular project.

The package consists of complex tools and scripts that can
be grouped into two major components: the statistical
monitoring and web interface package, and the plug-ins for
PBS and Condor queuing systems. The C++ wrappers use
instead of common queuing commands. The original binaries
are required to perform the actual job submission to the
query system. The PHP and C++ are used as the main
programming languages for developing the interface.

3. MPI-BASED MODEL FOR
PARALLEL COMPUTING
MPI interface is designed to provide an abstraction layer for
organizing synchronization and communication functionality
between processes running on different computational nodes.
As a typical way of configuration each CPU (or core in a
multi-core machine) is assigned to a single process. This
assignment happens at runtime through the agent that starts
the MPI program, normally called mpirun or mpiexec. [7]

The interfaces are designed to be thread safe. It is relatively
easy to write a multithreaded point-to-point MPI code, and
some implementations support such code.

MPI functions include point-to-point send/receive
operations. It is possible to choose between a Cartesian or
graph-like logical process topology.

Send/receive operations between processes are designed for
exchanging data pairs, including intermediate results of
computations (gather and reduce operations), nodes
synchronization (barrier operation) and obtaining network-
related information (e.g., the number of processes in the
computing session, current processor identity, neighboring
processes accessible in a logical topology, and so on). There
are four types of point-to-point operations:

• synchronous,
• asynchronous,
• buffered,
• ready forms.

4. NODE.JS AS A COMPUTATIONAL
ENVIRONMENT
Node.js is a technology and software environment that
allows users to create a web servers and networking tools
using JavaScript as a programming language. It uses a group
of “modules”, which handle different core functions to
handle server related functionality. The modules are used to
serve file system I/O, cryptography functions, networking,
such as DNS, HTTP, TCP, TLS/SSL, UDP, data streams,
binary data, etc. To reduce complication of writing server
applications, the modules of node.js use API design.

One of the following servers are supported by the node.js
applications:

• Linux
• macOS
• Unix
• Microsoft Windows.

The alternative writing language for JavaScript is either
CoffeeScript, Dart or Microsoft TypeScript. Actually,
JavaScript may be replaced with any language, which can
compile it.

Node.js is mainly used for building web server network
programs. The main aspect, which differs PHP from node.js,
is that functions of PHP block before completion (commands
may not be executed until previous commands are
completed), while the functions of node.js are non-blocking
(commands may be executed in parallel. To show any failure
or completion they use callbacks).

5. NODE JS – MPI INTERFACE

5.1. Node.js C++ Add-ons
Node.js Add-ons are shared objects, which are linked
dynamically. C or C++ languages are used during writing
Node.js Add-ons. To load it into node.js the required
function should be used in the same way as standard Node.js
module. The main usage is providing an interface between
C/C++ libraries and JavaScript, which runs in Node.js[10].

The method for implementing Add-ons involves knowledge
of several components and APIs:

• V8. A JavaScript implementation by C++ library.
V8 has mechanisms, which allows creating
objects, calling functions, etc.

• Libuy: The event loop(with its worker threads and
the entire asynchronous platform behaviors) of
Node.js is implemented by the C library. It
provides a cross-platform abstraction library,
which allows easy, POSIX-like access across all
target operating systems to various ordinary
system tasks (timers, file system interaction,
sockets, and system events). Libuy serves as a
pthreads-like threading abstraction. The usage is to
power more sophisticated asynchronous Add-ons,
which should be moved beyond the common event
loop.

• Internal Node.js Libraries. Node.js exports a
C/C++ APIs, which may be used in Add-ons.

• Collection of other statically linked libraries that
are located within the deps/directory of the
Node.js.

5.2. Open MPI

The Open MPI is an open source implementation of Message
Passing Interface standard. It is developed and maintained by
a group of academic, research, and industry partners [9]. The
following features are offered by Open MPI software
package:

• Full MPI-3.1 standards conformance
• Thread safety and concurrency
• Dynamic process spawning
• Network and process fault tolerance
• Support network heterogeneity
• Single library supports all networks
• Run-time instrumentation
• Many job schedulers supported
• Many OS's supported (32 and 64 bit)
• Production quality software
• High performance on all platforms
• Portable and maintainable
• Tunable by installers and end-users
• Component-based design, documented APIs
• Active, responsive mailing list
• Open source license based on the BSD license

Taking into account the above-mentioned advantages we
have chosen the Open MPI as MPI implementation for the
Cluster job management system.

5.3. Open MPI integration with Node.js as
Add-on

To enable MPI features to Node.Js based jobs we
implemented a Node.Js add-on that wraps the Open MPI
APIs. Using JavaScript functions it is possible to delegate
the functional calls to Open MPI.

The Node.JS event-scheduling mechanism supports call
backs from Open MPI to JavaScript.

As the next step of the project we are consider evaluation of
the system performance and its scalability over the number
of processors. A benchmarking script will designed to

compare Node.Js performance with C/C++ on the same
tasks. The benchmarks would be focused on two metrics:

• Runner Total Execution Time (RTET): which is
actual time taken by the job, form the moment the
runner is executed with the job to the moment it exits.

• Max Process CPU Time (MPCT): which is the
maximum of the CPU time of all the participating
processes in the job.

As possible tasks we consider PI number approximation and
Counting Prime numbers.

6. CONCLUSION
The main direction of the research was the investigation of
modern technologies that are used in concurrent computing,
organization of the high performance computational system,
distributed databases and web crawlers. The goal was to
ensure the fairness, simplicity and efficient cluster
management system of IIAP compatible clusters with the
modern technologies used in modern projects. The web
interface provides different allocation methods, credit-based
economy and control over delinquent members. Theoretical
research was conducted on the following topics:

• Distributed computing in high performance
computing systems using MPI model

• Possibility to use modern programming languages
and environments in MPI-based distributed
systems (JaveScript, Node js).

A software package was developed to enable MPI features to
Node.Js-based jobs. The package represents a Node.js add-
on that wraps the Open MPI APIs. Using the package it is
possible to create jobs that are suitable to run within the
Cluster job management system environment using the
popular Node.js JavaScript framework.

Evaluation of the system performance and its scalability is
considered as the next steps of the project.

REFERENCES

[1]. R. Henderson, D. Tweten, Portable Batch System:
Requirement Specification, NAS Technical Report,
NASA Ames Research Center, April 1995

[2]. R. Henderson, Job scheduling under the portable batch
system, Job Scheduling Strategies for Parallel
Processing, pages 279- 294. Springer-Verlag, 1995.
Lecture Notes in Computer Science volume 949

[3]. Torque Resource
Manager.http://www.adaptivecomputing.com/products/
open-source/torque/

[4]. Developer Survey Results 2016.
https://insights.stackoverflow.com/survey/2016

[5]. Language Trends on GitHub · GitHub.
http://githut.info/

[6]. State of the Computer Book Market, part 4: The
Languages. http://radar.oreilly.com/2012/04/computer-
book-market-2011-part4.html

[7]. Y. Zhang, T. K. Sarkar; John Wiley & Sons, Parallel
Solution of Integral Equation-Based EM Problems in
the Frequency Domain;

[8]. Node.JS official site. https://nodejs.org
[9]. Open MPI official site. https://www.open-mpi.org/
[10]. Node.Js Add-ons.http://nodejs.org/api/addons.html

