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ABSTRACT 
In this paper, we proposed a method for implementation of a 

mechanism for “redundancy sharing” allowing to repair a 

fault/defect in a memory instance from a memory system with 

hundreds of memory instances with an available shared 

redundant element of another memory instance. The 

calculations showed that hardware is saved to a great extent 

with a negligible impact on memory’s functional 

performance. 
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1. INTRODUCTION 
Built-in Self-Repair (BISR) is widely used for improving 

memory-core yield. Although, the portion of a BISR circuit 

with respect to the area of the corresponding memory instance 

area is usually small, but due to the number of hundreds of 

memory instances in a memory system (MS), when each 

memory instance with redundancy had its own BISR circuit, 

the total area of the BISR circuits in an MS increased to a great 

extent. To decrease the overall area overhead of BISR circuits 

in an MS, many researchers proposed some notions of “shared 

BISR”, grouping, reusing, multiple shared buses, etc. (see [1]-

[12]). They reduced the area overhead by performing test and 

repair of memory instances serially that increased the time for 

test and repair. To reduce area overhead and test & repair time, 

“shared BISR” was used performing test & repair of multiple 

memory instances in parallel. Hence, grouping is another 

approach to be applied with respect to the typically great 

number of memory instances in an MS to make use of the 

property of structural identity of memory instances from the 

same group. 

 

Today’s complex MS usually contains hundreds of memory 

instances. Built-in Self-Test (BIST) is one of the main 

approaches for testing memories in an MS [1-12]. ARM 

company has introduced a shared test bus and used it for 

efficient test and repair purposes. Synopsys’s DesignWare 

Multi-Memory Bus (MMB) [3], based on ARM’s shared test 

bus, also used the bus for efficient test of multiple memory 

instances attached to the bus. Mentor Graphics [2] proposed 

to use a functional bus for its efficient testing in addition to 

the test bus. We suggest here an idea of using the functional 

bus for efficient repair of memories via “redundancy sharing” 

due to which time and hardware are saved during the repair 

[1-12]. 

 

The redundant elements remaining after manufacturing repair 

can be used in the field during test and repair sessions and soft 

repair performed periodically after power-up (see [1]). 

However, in all above mentioned approaches [1-12] each 

memory instance with redundancies used its own 

redundancies as local redundancies for repair within one 

instance only and did not have the capability to use other 

available redundancies allocated for other memory instances 

with redundancies. In other words, the redundancies of 

memory instances were not sharable, they could not be used 

by other memory instances. Although the proposed in [1] 

SMS (STAR (Self-Test and Repair) Memory System) test and 

repair solution shows high efficiency, however, there is still a 

possibility to develop the approach farther allowing to save 

much more hardware. There is an efficient way to save 

hardware due to an effective and flexible usage of hardware. 

It is based on the idea of “a sharing mechanism for 

redundancies”. We connect the redundancies with the 

functional bus and use them for the repair of any fault in any 

reparable memory instance connected to the shared functional 

and test buses. BIST is performed by means of the shared test 

bus, and the repair is performed by means of the functional 

bus. For the sake of accuracy, we should mention three 

publications [16], [17], [18] where the expression 

“redundancy sharing between different memories” was 

mentioned. In [16], however, the text lacked in details 

connected with the usage, implementation and estimation of 

the impact on hardware and time of the chip performance. In 

[17], a BISR technique for multiple repairable memory 

instances with block-based redundancies was proposed. 

Redundant rows and columns were divided into row and 

column blocks and repair was being performed at the block 

level. Based on the proposed block-repair mechanism, a 

heuristic redundancy analysis algorithm was proposed. 

However, for the considered small example of only four 

memory instances the hardware overhead was only 7.6 % and 

it is not clear at all how much it will be for hundreds of 

memory instances. In [18], a Content-Addressable-Memory 

(CAM) -based shared BISR structure is proposed for test and 

repair of RAMs, as well as the corresponding repair strategy 

for the shared BISR. Although the authors claim its high 

efficiency with low area overhead but, however, the authors 

do not talk about the memory access mechanism which 

involves shared repair justifying this with their aim to simplify 

discussion. 

 

2. REDUNDANCY SHARING 

MECHANISM FOR REPARABLE 

MEMORIES 
Meantime, in today’s new technology memories, 

defects/faults are becoming less probable, and the 

conventional usage of redundancies in each reparable memory 

instance seems to be not efficient any more. The number of 

possible defects that can be found in memory instances in an 

MS can be estimated based on the current semiconductor 

technology and the corresponding statistical data on defect 

density for memory instances and the area occupied by them. 

Defects in memories are now being measured by new criteria 

and new notions, such as DPPB (Defective Parts Per Billion) 

(see [19]), that has been introduced recently meaning that 

memory devices are now very robust and reliable with very 

low probabilities for fault/defect emergence. We propose to 

share redundancies between all reparable memory instances 
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and, thus, allocate redundant elements not within individual 

memory instances but within the whole MS introducing the 

capability of repairing any fault/defect that could be detected 

in any memory instance in the MS. Note that initially the MS 

could contain instances without redundancies, i.e. 

unrepairable memory instances that were initially 

unrepairable, but however, after applying the proposed 

approach of redundancy sharing they will become reparable. 

Thus, redundancy sharing will also increase the reliability of 

the MS as a whole since after the modification all memory 

instances will become reparable.  We propose to deprive all 

reparable instances in the MS of all redundant elements and 

keep only one reparable instance with several global 

redundancies designated for the repair of all memory 

instances, and we should have a possibility for the memory 

instance to repair each defect in each memory instance 

contained in the MS. The few redundancies allocated for one 

reparable memory instance should be enough for repairing all 

possible faults in each memory instance in the MS. The 

defects that will be detected during the BIST session will be 

repaired by the BISR engine. Since it is not predictable the 

actual location of faults/defects in the MS, then the only 

requirement is to have the capability for sharing these few 

redundancies for repairing the possible defects/faults in all 

memory instances. 

 

A similar methodology is being currently developed for the 

“shared repair with column redundancies”. Due to the page 

limitations and for the sake of simplicity, we will constraint 

ourselves in this paper with consideration of a simple case 

when the MS contains only row redundancies, and all memory 

instances are identical instances without redundancies, and 

there is only one reparable memory instance of the same size 

with redundant rows. The MS considered has a test bus (used 

for test) and a functional bus (used for repair) of all memory 

instances in the memory system. 

 

3. SOME DETAILS OF 

IMPLEMENTATION 

3.1. Conventional Hardware 

Implementation 
Consider a memory system consisting of hundreds of memory 

instances. Memory instances are either reparable memories 

with redundant rows or memories with no redundancies.  

 

First, we apply Synopsys’s DesignWare STAR memory 

grouping tool to group the memory instances into sub-groups 

according to the memory structural parameters and including 

the memory instances with identical structure into one group. 

Thus, consider a sub-group of memory instances Gi = {M1, 

M2, …, Ms} where all memory instances Mi, i=1,…, s, have 

the same structure, i.e. the same number of rows and columns, 

all are with the same number of redundant rows, or all of them 

have no redundancies. Note that we exclude the special case 

when all the memory instances in a group Gi are all without 

redundancies. In this case, however, we suggest to keep the 

structure of the group unchanged.  

 

Now, suppose a group Gi contains memory instances M1, …, 

Ms where each instance Mi has two redundant row groups, 

each redundant row group consisting of Dx physical rows. 

This parameter depends on memory technology and is the 

same for all memory instances in a sub-group. We propose a 

few basic steps for implementation of the hardware. Figure 1 

depicts the conventional solution of the SMS group Gi. We 

consider a special case when each memory instance Mi, i=1, 

…, s, has two redundancy row groups where each row group 

R1 and R2, consists of Dx redundant physical rows. 

Next, in Fig. 1, 1500 is the 1500 standard interface, Mi, i=1, 

…, s, are the memory instances with redundancy elements, Wi 

are the wrapper logic of the memories Mi, i=1, …, s, for BISR, 

Rl. R2, are respectively the first and second row redundancy 

group for Mi with Dx physical row redundancies the 

redundancy elements, MEi are the enable signals of the 

functional bus for memory Mi. symbols “X” are examples of 

defects/faults in the memory instance. 

 

In the conventional SMS group, the repair mechanism is 

implemented by means of the redundant elements in a 

memory. Those redundancies are placed locally in the 

memory instance and can be used for repairing of the defects 

in the particular memory instance only that is a big limitation 

for the memory system reparability, in general.   

  3.2. Implementation of the Proposed 

Shared Row Mechanism 
 

In Figure 2. the implementation of the memory sub-group of 

identical memory instances with two redundant row groups 

with the shared row redundant elements is presented.   
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Fig. 1. Conventional structure of the SMS group  
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SRC is the shared redundancy control RTL unit, REni, i=1, 

…, s, are the redundancy enable signals, Mi are the memory 

instances without the redundant rows, MRR is the memory 

instance with the shared row redundant elements, number of 

which is determined by multiplication of Defect Density and 

Memory Area in the memory system, the symbol.  

 

 

4. ESTIMATIONS OF PERFORMANCE 

AND AREA SAVING 

4.1. Performance Evaluation 
The main issue related with SCR implementation is the time 

delay which is added additionally to the path of Memory 

Enable (ME) signal. This delay can be critical especially for 

the case of performance of the functional bus at the maximum 

frequency.  Some SPICE simulations have been done by using 

the memory model of 28nm technology. The simulation 

results confirm the correct work of the memory with SRC unit 

at the maximum frequency.   

In the case when the “shared redundancy mechanism” is used, 

the repairing of a defect in each memory in the memory 

system is performed by means of the row redundancy 

elements which are placed in the special memory instance 

MRR. The repairing is done through the functional bus of the 

memory system.  The switching between a defective address 

and a redundant element is implemented in the SRC RTL unit. 

In Figure 3. the flow chart of the SRC unit is presented. The 

SRC block contains the redundancy registers (RRi) that are 

intended for   storing of the address of a defective cell.  The 

output of the register RR is joined with a comparator (=). 

The comparator compares in real time the value of the RR 

with the address value on the address of the functional bus 

(ADR signals).  If the address coincides with the address of 

RR then SRC unit blocks the memory enable signal MEi of 

the corresponding memory instance on AND element(s) and   

simultaneously activates the Redundancy enable (REk) signal 

for the corresponding redundant element. The number of RR 

registers is the same as the number of the redundant elements 

in the MRR memory instance. Information in RR registers can 

be updated through serial input/output ports (SI and SO 

signals) by SMS processor or by Server by means of standard 

1500 interface.    

 

4.2. Area Saving 

Introduce the following notations: 

Dx  - number of physical rows in a redundant row group, 

DM  - defect density of an SRAM memory, 

AM  - area of a memory with redundancies, 

DM . AM – number of possible defects in a memory with 

redundancies, 

Ab – area of a bit-cell b in a memory, 

m – number of memories with redundancies on the functional 

bus of the memory system, 

k – number of columns in a memory, 

l – number of rows in a memory. 

 

 

According to our proposal of “shared row mechanism”, all the 

memory instances with redundancies in a memory group of 

identical memory instances are proposed to replace with 

corresponding instances with no redundancies but retaining 

only one reparable instance with the number of row 

redundancies equal to the multiplication of memory defect 

density by the area of the memory system. As a result, since 

row redundancies of the other instances are removed, and 

since the number of such instances with excluded row 

redundancies may be a few hundred in modern SoCs then the 

area saving is significant. Based on Figures 4 and 5, the 

percentage of the redundancy area saving can be estimated by 

the following formula: 

 

ΔR = ((RM - R*M)/RM)  100 % , 

 

where RM is the area of the redundant rows in the given 

memory system, and R*M is the area in the modified circuit 

after excluding the unnecessary redundant rows. Then area 

saving can be estimated as follows:  

 

ΔR =(1- DMAM/m) 100 %= (1 – lkAbDM) 100% . 
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Our calculations for different configurations of memory 

instances contained in the memory system showed significant 

saving of hardware due to the sharing mechanism of row 

redundancies in memory instances resulting in exclusion of a 

great amount of redundant area in memory instances. 

 

 5. CONCLUSION 
In this paper, we proposed a “redundancy sharing 

mechanism” for the repair of a fault/defect in a memory 

instance from a memory system with hundreds of memory 

instances with an available shared redundant row of another 

memory instance. The calculations showed that hardware is 

saved to a great extent with a negligible impact on memory’s 

functional performance. 

 

In the future, we are planning to extend this research for the 

cases of redundant columns and 2D redundancy when both 

redundant columns and rows are available in memory 

instances.  
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