
Technical Solutions of Developing Advanced Inftheo New
Module for R

Narek Pahlevanyan

Gyumri State Pedagogical Institute
Gyumri, Armenia

e-mail: narek@ravcap.com

ABSTRACT
The large volume of distributions in complex formulas of
Information Theory makes computations very difficult in
practice. To perform computations of complex information-
theoretical results of Information Theory the authors have
developed a new module (Advanced Inftheo) for R.
Currently R has some associated issues, such as performance
limitations, memory management restrictions, etc. In this
paper we present technical solutions that are used inside
Advanced Inftheo to overcome those and other limitations
that have occurred during the development of the module.

Keywords
R language, R package, rate-reliability, shootout
benchmarks, multithreading.

1. INTRODUCTION
Nowadays R language is evolving very fast. Large
companies are currently using R for various applications.
Facebook uses R for exploratory data analysis, experimental
analysis, big-data visualization, human resources and user
behaviour analysis related to status updates and profile
pictures.
Recent interest in the financial sector has stimulated Oracle
to support R, for instance, Oracle is now bundling it as part
of its Big Data Appliance product. Google uses R for
advertising effectiveness, economic forecasting, and big-data
statistical modeling. Twitter uses R for data visualization and
semantic clustering. R is a language for statistical
computing, data manipulation, data mining and graphics.
Robert Gentleman and Ross Ihaka started the development
of R in 1993, but only recently it became popular,
particularly for data scientists, as it contains a number of
built-in functions for organizing data, running calculations
on the information and creating elegant graphical
representations of data sets. R provides a lot of different
techniques for statistical linear and nonlinear modeling,
time-series analysis, classification, clustering as well as
graphical packages for creating high quality, and
sophisticated, customized plots with very simple syntax. The
capabilities of R can be extended through user-created
modules. Modules are libraries developed in C++, that
include specific functions for certain applications. A core set
of packages included with the installation of R, with more
than 5,800 additional packages and 120,000 functions are
free available for download [1].
Authors believe that R can be very handy and helpful for
calculations of complex formulas of Information Theory.
Many information-theoretical results are difficult for
computing in practice because of the large volume of
distributions. For example, the investigation of rate-
reliability function [2] for various applications [3], [4] is
complex and computational results are complicated to

Mariam Haroutunian

Inst. for Informatics and
Automation Problems

National Academy of Sciences of
Armenia

Yerevan, Armenia
e-mail: armar@ipia.sci.am

obtain. Because of the difficulties in computations of rate-
reliability function, the problem was solved only for
particular cases, such as for simple Discrete Memoryless
Channel the analytic form of the function is unknown, only
the upper and lower bounds are known. R already had an
extension for calculating various measures of Information
Theory, but there was a need in creation of a new module for
estimation and computation of more complicated formulas
mentioned above.
To perform computations of complex information-theoretical
results in Information Theory the authors have developed a
new module for R, called Advanced Inftheo. Module
Advanced Inftheo was developed in C++; it provides
functionality for computation of the lower and upper bounds
of rate-reliability function, as well as functionality for
computation of mutual information, conditional mutual
information, Kullback - Leibler (divergence) distance and
other quantities of Information Theory. Furthermore, the
authors have developed an option for module to connect with
cluster (using the library Open MPI [5]) and execute all
computational functions on cluster. This option can speed up
the computation process multiple times.
The Advanced Inftheo module experimentation results are
published in [6]. Specifically, in [6] the authors have
computed the lower and upper bounds of ̂ -achievable secret
key rate of the biometric generated secret key sharing system
for various distributions. Moreover, they provide graphical
representations of the experimentation results to simplify the
solutions in building of applications.
Unfortunately, R has some associated issues, such as
performance limitations, memory management restrictions,
etc. Those issues affected Advanced Inftheo module as well.
In this paper we present technical solutions that were used to
overcome limitations of R.

2. R LIMITATIONS
2.1. Performance
R is not a fast language. This is not an accident. R was
designed specifically to make data analysis and statistics
easier [7], [8]. It was not designed to make “life” easier for
computer. In R, function arguments are evaluated only if
they are actually used. To implement such evaluation, R uses
a specific object that contains the expression needed to
compute the result and the environment in which to perform
the computation. Creating these objects has some overhead,
so each additional argument to a function decreases its speed
a little. Furthermore, R is a dynamic programming language
and almost anything can be modified after it is created. For
example, the user can change the body, arguments, and the
environment of functions, modify objects outside the local
environment, etc. The disadvantage of dynamism is that it is
hard to predict exactly what will happen with a given
function call. This is a problem because the easier it is to

mailto:narek@ravcap.com
mailto:armar@ipia.sci.am

predict what is going to happen, the easier it is for an
interpreter or compiler to make an optimization. If an
interpreter can’t predict what is going to happen, it has to
consider many cases before it finds the right one. The time
consumption of finding the right method is higher for non
primitive functions.
To compare performance of R with C++ and Python we used
the Shootout benchmarks. Results appear in Fig. 1.

new/malloc) and data allocated by the R virtual machine is in
Fig. 2.
The figure shows that R allocates a lot more data than C++,
and is clearly memory inefficient.

Fig. 1. Slowdown of Python and R, normalized to C++ for
the Shootout benchmarks.

On those benchmarks, R is on average 501 times slower than
C++ and 43 times slower than Python. Benchmarks where R
results are better, like regex-dna (only 1.6 slower than C++),
are usually cases where R transfers most of its work to C++
functions. Another big restriction that affects the
performance is the absence of multithreading support inside
R.

2.2. Memory management
R has memory management limitations. R memory limits
depend mainly on the build of OS, but for a 32-bit build of R
on Windows they depend on the underlying OS version. R
holds all objects in virtual memory, and there are limits
based on the amount of memory that can be used by all
objects; there may be limits on the size of the heap and the
number of cons cells allowed. There is also a limit on the
(user) address space of a single process such as the R
executable. The environment may impose limitations on the
resources available to a single process: Windows versions of
R do so directly. Error messages beginning “cannot allocate
vector o f size” indicate a failure to obtain memory, or
because the size exceeded the address-space limit for a
process. Note that on a 32-bit build there may well be
enough free memory available, but not a large enough
contiguous block of address space into which to map it.
There are limits on individual objects. The storage space
cannot exceed the address limit, and if you try to exceed that
limit, the error message begins with the text “cannot allocate
vector o f length ”.
Furthermore, R consumes significant amounts of memory.
Unlike C++, where data can be stack allocated, all user data
in R must be heap allocated and garbage collected.
Comparison of heap memory usage in C++ (calls to

Fig. 2. Heap allocated memory (MB log scale). C++ vs. R.

3. TECHNICAL SOLUTIONS
3.1. Sequential and multithread functions
It was mentioned above that Advanced Inftheo module was
developed in C++; it suggests that R limitations can be
solved using different techniques available for C++. Fig. 3
illustrates Advanced Inftheo main functions slowdown
compared with versions of the same functions that were
running under pure C++. Note that the figure depicts
function versions that are executed in both environments
only using a single thread.

ca lcLow erB oundO fE C apacity
ca lc M arginal D istribution
calcM utual Information
ca lcR e la tiveE ntropy
ca lcU pperBoundO fEC apacity

Fig. 3. Slowdown of Advanced Inftheo main functions from
R environment, normalized to C++ versions of the same

functions.

From Fig. 3. we can see that performance of functions in
Advanced Inftheo is very close to the performance of the
same functions that have been executed in pure C++. The
slowdown comes mostly because some functions of
Advanced Inftheo are hybrids and are using R functions too.
Moreover, Advanced Inftheo module is using multithreading
for faster performance [9]. That means that Advanced
Inftheo can take advantage of multiprocessor hardware.
Usage of multithreading also implies that new issues arise
with execution of parallel threads. At first sight
multithreaded programming seems rather simple. Instead of
having just one processing unit for performing the work, you
have two or more executing simultaneously. Because the
processors might be real hardware, the term "thread" is used
instead of the processor.
A thread is a path of execution through the program. In a
single threaded program, there is always a single path of
execution. While in a multithreaded program, there are two
or more paths of execution. It means, that while using a
single threaded program, only one task can be executed at a
time, and the program waits until the task is
finished/completed, before starting another one. For most
uses, one thread of execution is all that is needed, but for our
case, gain in execution time is very crucial. For specific
tasks, the ability to use multiple threads in parallel can result
in significant performance gains. The tricky part of
multithreaded programming is how the threads communicate
with each other.
The most commonly deployed multithreaded communication
model is called a shared memory model [10]. In this model
all threads have an access to the same pool of shared
memory. The advantage of this model is that multithreaded
programs are programmed in much the same way as
sequential programs like R. That advantage, however, is its
biggest problem. The model does not distinguish between
memory that is being used strictly for thread local use (like
most locally declared variables), and memory that is being
used to communicate with other threads (like some global
variables and heap memory). Since the memory that is
potentially shared, needs to be treated much more carefully
than the memory that is local to a thread, it's becoming much
easier for making mistakes. The most common way of
preventing access to the same shared resources is to use
locks to prevent the other threads from accessing memory
associated with an invariant. Locks are one of the key
techniques that are being used inside Advanced Inftheo.
Lock gains different names. It is sometimes called a monitor,
a critical section, a mutex, or a binary semaphore, but
regardless of the name, it provides the same basic
functionality. The lock provides enter and exit points, and
once a thread calls enter, all attempts by other threads to call
enter will cause the other threads to wait until a call to exit is
made. The thread called enter is the owner of the lock, and it
is considered a programming error if exit is called by a
thread that is not the owner of the lock. Locks provide a
mechanism for ensuring that only one thread can execute a
particular region of code at any given time.
Memory can be made safe for multithreaded use in several
ways. Firstly, memory that is only accessed by a single
thread is safe because other threads are unaffected by it. This
includes most local variables and all heap-allocated memory
before it is published.
Secondly, memory that is read-only after publication does
not need a lock because any invariants associated with it
must hold for the rest of the program.
Thirdly, memory that is actively updated from multiple
threads generally uses locks to ensure that only one thread
has an access while a program invariant is broken.

Finally, in certain specialized cases where the program
invariant is relatively weak, it is possible to perform updates
that can be done without locks. In Advanced Inftheo
specialized compare-and-exchange instructions are used.
These techniques are one thought of as special
implementations of locks.

3.2. Deadlocks
One of the big reasons for avoiding many locks in the
module is deadlock [9]. Once a module has more than one
lock, deadlock becomes a possibility. For example, if one
thread tries to enter Lock X and then Lock Z, while at the
same time another thread tries to enter Lock Z and then Lock
X, it is possible for them to deadlock if each enters the lock
that the other owns before attempting to enter the second
lock.
From a pragmatic perspective, deadlocks are generally
prevented in one of the two ways. The first way to prevent
deadlock, is to have enough locks in the system that it is
never necessary to take more than one lock at a time. If this
is impossible, deadlock can be prevented by having a
convention on the order in which locks are taken. Deadlocks
can only occur if there is a circular chain of threads such that
each thread in the chain is waiting on a lock already acquired
by the next in line. To prevent this in Advanced Inftheo each
lock in the system is assigned a "level", and the functions are
designed so that threads always take locks only in strictly
descending order by level. This protocol makes loops
involving locks, and therefore deadlock is impossible.
Deadlocks are just another reason for keeping the number of
locks in the system small.

3.3. Synchronization
While locks provide a way of keeping threads out of each
other's way, they don't provide a technique for them to
synchronize. Generally, events are used as a signal that a
more complicated function property holds. For example, a
function might have a queue of work for a thread, and an
event is used to signal to the thread that the queue is not
empty. The rules for proper locking require that if code
needs a resource, there must be locks that provide exclusive
access for all memory associated with that resource.
Applying this principle in a queue suggests that only after
entering a common lock all the accesses to the event and the
queue should happen.
Unfortunately, this design can cause a deadlock. For
example. Thread X enters the lock and needs to wait for the
queue to be filled. Thread Z, which is attempting to add an
entry to the queue that Thread X needs, will try to enter the
queue's lock before modifying the queue and thus block on
Thread X. A common practice is to release the lock and then
wait on the event. A typical solution was to weaken the
resource in this case to, "if the event is reset, then the queue
is empty." This resource is strong enough that it is still safe
to wait on the event without risking waiting forever. The
waking thread has to enter the queue's lock and verify that
the queue has an element. If say some other thread removed
the entry, it must wait again. If fairness among the threads is
important, this solution has a problem, but it does work well
for all functions inside Advanced Inftheo.

3.4. Implementation on cluster (Open
MPI)
As already mentioned for speeding up computational process
we have built an option for execution of module functions on
cluster. The key point of implementation of this feature was
attachment of Open MPI library to the module. The main
reason why we chose Open MPI is it's precisely designed

Modular Component Architecture (MCA), which breaks all
of the Advanced Inftheo functionality into narrowly grouped
modules that can be modified independently [11]. The MCA
administrates the component frameworks and provides
services to them, such as the ability to accept run-time
parameters from higher-level abstractions and pass them
down through the component framework to individual
components. Each component framework is devoted to a
particular task, such as providing parallel job control or
perform MPI collective operations. Framework also can
discover, load, use, and unload components. Each
framework has different usage scenarios; some will only use
one component at a time, while the others will use all the
available components at the same time. Components are
software units that can configure, build, and install
themselves. Open MPI uses a flexible component
architecture, and it’s point-to-point design is such that it
provides excellent communication performance for different
interconnections inside Advanced Inftheo functions.

[11] E. Gabriel, G. E. Fagg, and G. Bosilca, “Open MPI:
Goals, concept, and design of a next generation MPI
implementation, ” in Proceedings, 11th European PVM/MPI
Users’ Group Meeting, Budapest, Hungary, September 2004,
pp. 97-104.

4. CONCLUSION
Thus, the technical approaches used in Advanced Inftheo
module allowed to achieve high performance and dynamic
memory management.
Parallelism inside Advanced Inftheo can give huge time gain
in computations of information-theoretical results for the
practical applications.

REFERENCES
[1] W. N. Venables, D. M. Smith and the R Core Team, “An
Introduction to R”, version 3.1.1, pp. 51-77, 2014.

[2] E. A. Haroutunian, M. E. Haroutunian, and A.
N.Harutyunyan, “Reliability criteria in information theory
and in statistical hypothesis testing, ” Foundations and
Trends in Communications and Information Theory, Vol. 4,
no. 23, pp. 97-263, 2008.

[3] M. E. Haroutunian, N. S. Pahlevanyan “Information
theoretical analysis of biometric secret key sharing model,”
Transactions of IIAP of NAS of RA, Mathematical Problems
of Computer Science, vol.42, pp. 17-27, 2014.

[4] E. Haroutunian, “On bounds for E-capacity of DMC,”
IEEE Transactions on Information Theory, vol. 53, no. 11,
pp. 4210–4220, 2007.

[5] Michael J. Quinn, Parallel Programming in C with MPI
and OpenMP, McGraw-Hill Education Group, 2003.

[6] M. E. Haroutunian, N. S. Pahlevanyan “Experimentation
of Advanced Inftheo module for R on the example of
biometric generated secret key sharing system,” International
Journal “Information Content and Processing”, Vol. 2,
Number 1, pp. 62-70, 2015.

[7] R Development Core Team. “R: A Language and
Environment for Statistical Computing, ” R Foundation for
Statistical Computing, 2011.

[8] D. Smith. “The R ecosystem”. In The R User Conference
2011, August 2011.

[9] C. Hughes, T. Hughes, Professional Multicore
Programming: Design and Implementation for C++
Developers, Wrox Press Ltd., Birmingham, UK, 2008.

[10] A. Polukhin, Boost C++ Application Development
Cookbook, Packt Publishing, 2013.

