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ABSTRACT

The n-dimensional torus with generating cycles of even
length is considered. Stable subsets of the torus are
determined and described.
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1. INTRODUCTION

Definition 1. For any integers 1<k, <k, <---<k <o

the multivalued n-dimensional torus T, ., has been

defined as the set of vertices:

Tk, =UXes Xgo o X ) =K +1< %, <k;, X, €Z,1<i<n},

where two vertices X=Xy, Xgyeeer X)) and

Y=Yz ¥n)  of T, are
neighbours, if they differ by exactly one coordinate for
which either |x; —y; |=1 or the values equal (—k; +1)
and k;

considered as

respectively. The sum and difference of these
vectors has been defined in the following way:
Z=Xty=(X %Y, X, £y, X, £Y,)=(21,2,,-,2,)
where —k; +1<z, <k; and z, =(x; £y,)(mod 2k;) .
norm of a

We denote by || x]|| the vertex

n
X = (X, X,,...,X,) where ||X||:Z| X; |, and denote by
i=1

(X, Y) the distance between the  vertices
X=Xy, Xp,...,X,) and y=(,,Y,---,Y,)  Where
pY)=lIx=YyIl.

The set S"(x,K)={yeTg , /p(Xxy)<k} is called a

sphere with the centre xeTj , and radius k, and the
set O"(x,K)={yeT, . /p(xy)=k} is the envelope

with centre X and radius k.

Let e =(a,,0,,...,c,) denote the unit vector of i-th

direction, where a; =1 and «a; =0 for j=#i , and let

Tand 0 be the vectors with all 1 and all 0 coordinates

respectively: 1= (11,---,1) and 0= (0,0,---,0).
For any subset AcT; ., and any i (1<i<n) and

j (-k, +1<j<k;) we make the following designation:

A+ je ={x+je / xeA}.
We will consider partition of T, , (respectively
partition of Angrl‘kz_nkn ) on i -th direction, 1<i<n and
j -th value, —k;+1< j<k and will denote by T,"(}j)
(respectively by A(])):
T == %0 %,) €T, /% = 1}

A D) ={x= (X%, %) € Al %, = [}= ANT(j) .

Notice that the intersections of the sphere S"(X,k) and
the envelope O"(x,k) with the (n—1) -dimensional torus
T," (X, + J), are respectively the sphere and envelope with
the centre X+ je and radius kK—|j| in T,"(x, + j). We

make the following designations:
St(x+je k=i ={yeS"(x k) /yi=x +j}=
=S"(xK)NT" (% + 1)

O (x+je k= j)={yeO"(x k) /'y, =x + j}=
=0"(xK)NT"(x + ),
where in case of k—|j<O

S’ (x+j& k=[j) =0 (x+je, k- j)=2.

these sets are empty:

ki ki
It is clear that Ty, 4, = UTi”(j) , A= UAi(J),

j=—kj+1 j=kj+1

s"(x,k) = |JS"(x+ je. k=1 ),

j=—kij+1
ki

0"(x,k)= | JOI (x+ je&.k=|]jl),
j=kj+1

foreach i,1<i<n;

Definition 2. For a given subset Ac Tk’;kz"'kn we say that a
vertex Xe€ A is an interior point of A, if all its
neighbouring vertices belong to A. Otherwise Xe A is
called a boundary vertex of A. We denote by B(A) and
L'(A),

respectively, the subset of all interior and

boundary points of A.



ki

For each A(]j) in the partition of A= UAi(J) we

J=—ki+1
denote by B(A(j)) and T(A(]j)) , respectively, the
subsets of its interior and boundary vertices in (n—1)—

dimensional torus T," ().

For any vertex X =(X;,X,,...,X,) of Tklzk2~»-kn , we denote by

x| and &(x) the vectors |X|=(X;|.|X, |,...,] %, [) and
o(xX)=(,,,...,a,), where a, =1 for x,,,>0 and
a; =0 for x,,,, <0.

In general, for n -dimensional vectors X =(X,,X,,...,X,)

and  y=(Yy,Y,-...Y,) Wwith nonnegative integer
coordinates, we say that the vector X lexicographically
precedes Yy (written by X<Yy), if there is a number

r,1<r<n, suchthat x, =y, for 1<i<r and X, <Y, .
Now we order the vertices of the torus Ty} _, ~as follows:

vertex X precedes vertex Yy (written by X<V ), if and
only if
Lo fixII<llyll or
2. |Ix|I=1ly |l and &(y) lexicographically precedes
o(x) ,or
3. Ixl=lyll,  o(x)=46(y) and |y]|
lexicographically precedes | X|.
It is easy to check that this ordering between the vertices

of the torus T, , isalinear order.

Definition 3. The first a vertices of the torus Tk?kz-»-kn by

the above determined liner order we call standard

arrangement of cardinality a,0<a< |Tk?kz--~kn |.

Torus Ty, ., for k =k, =---=k, =1 is called the n -

dimensional unit cube, which is denoted by E" .

For a Boolean vector oa=(o,,,:,a,) the set

a(Tg,.. ) ={xeT . 15(x)=a} iscalled « - part of the
= e, ) and

acE"

all o -parts of the torus are isomorphic. Notice also that « -
parts of Tkjkz___kn are arranged according to order <.

torus Tk:kz___kn . It is clear that Tk'zkz‘,,kn

ki
Let A= UA(]) We replace each A(j) with the

j=—kj+1
standard arrangement in T,"(j) of the same cardinality,
and call this transformation N, - normalization of A with
respect to the i- th axis. We denote by N;(A).the

resulting configuration.

It is clear that during N, - normalization, if some A(j) is
not the standard arrangement in the corresponding (n—1) -

dimensional space T,"(j), then instead of some vertices of

A we take the same amount of new vertices, precedeing
those in the linear ordering < in the T . Therefore, if

n
kekz: -y

we alternately normalize A with respect to axes 1, 2, ..., n,
then after a finite number of steps we obtain a stable subset
A with respect to N, - normalization, i.e. N;(A)=A for

each i,1<i<n.

Some properties of the standard arrangement of discrete
torus T, , are proved in [2]; in particular, it is shown

that the standard arrangement is stable with respect to
N, - normalization. In this paper we study properties of

arbitrary stable subset Ac Tkaz---kn with respect to the N, -

normalization.

Observe that in the n-dimensional unit cube the
difference between the standard arrangement and stable
subsets with respect to the N, - normalization, - is very

small [1].

2. DESCRIPTION OF THE STABLE
SUBSETS

Hereafter we shall assume that n>3. In this section we
give a description of the stable subsets of the discrete torus

Tk?kz---kn .

It is proved in [3] that if a subset AT, , is stable with
respect to N, - normalization and A, (j,)=T,(j,) for
AMD=T"() for  each
j, —J,+1<j<],. Let j,21 be the smallest number that
does not satisfy the condition A (j)=T,(j). Then,

according to the statement E of the theorem proved in [3],
subsets A (j,) and A, (—j,+1) can be only of the

following types:
> AT+ =8]( o +De, k+1)US .,
A (o) =87 (joe, K)US,,
@#S ;<0 (-], +De,.k+2),

some W21, then

where

n-1
S, <O!(joe, k+1) and k+1<> 'k —1; or

i=1
> AGi+)=8((-J, +De, k)US .,
A, (jo) =S (joe, . k)U S,,» Where
Sfj0+1 < O: ((_jo +1)envk +1)|

n-1
@#S, <Ol (joe,.k+1) and k+1<D 'k —1.
i=1

Hereafter, without loss of generality (for simplicity), we
shall assume that j, =1.

One of the following theorems holds.



Theorem 1. If the set AC T, , is the stable subset of the

discrete torus and A 0)=S; (6, k+1D)US,,

AM=5"(, k)US, where @=S,c0"(0k+2),
n-1

S, <O (e, . k+1), k+1<)'k -1, then
i=1

A (D)=S,(je, k+1-| j)US; for each

Ji—k, +1<j<k,, where S, cO](je, k+2-|j]).

Moreover,
la.if O (6, k+2)S, #@ only in the first « -part, then
= O)(je, k+2-j)c A(]j) foreach j,1<j<K,,
in all & -parts except, perhaps, the last two
(when n=3 and k, > j>k+2-k; it could be

that OJ(je,,k+2—j)z A,(j) also in the second

o -part), and
. O, (je,,k+2+j)NS; =@ for each
j,—K, +1<j <0, only in the first « -part;
1b. if O, (6,k +2)(1S, #@ only in the first two « -parts
(when O"(0,k +2) ={(k,,K,.....k_,,0)} we have in mind
the first two « -parts of the envelope O (—e,,k+1), for
which O] (-e, k+1)N A=), then
= O/(je,k+2—j)cA(j) forany j1<j<k,,
in all o -parts, except perhaps in the last o -part,

and
= Of(je,k+2+])NS; =@ for each

j,—k, +1<j <0, only in the first two « -parts;
lc.if O] (5,k+2)|’]50 =@ at least in the first three « -parts
@t 0"(0,k+2) ={(K, k,.....k, ,,0)} we have in mind the
first three « -parts of the envelope O (—e,,k+1), for
which O (e, k+)NA=D), then
O, (je, . k+2—j)< A, (j) for each j1 <j<k, (when
n=3 and k, +1<k+2<k,+k,—1 for j>k, it could be,
that O3(je,, k+2—j)z A,(j) in the final fourth « -part);
1d. if 07(0,k+2)NS,=@ in the first o -part and
Or(0,k+2)NA=@, then O](je, k+2—j)c A (j) for
any j, 1<j<k,, or A:S”(6,k+1)U

kn
U{Uon"(jen,k+2— j)]U{(xl,xz,...,xr,l,l,...,l,O)}\

j=1
V{@L... Lk, +1...—k, , +1k,)}, where
X=X ==X=0,

n-1
kK+2=n-r—-1=r+ Z:(ki -D+k,, r>1

i=r+l
Theorem 2. If the set Ang:kzmkn is the stable subset of
A(0)=5](0,k+1)US,,
S, =0/ (0,k+1),

the discrete torus and

A @ =S;(e,.K)US,,

where

n-1
@#S, O] (e, k+1), k+1<> k —1, then

i=1

v A>()=S](je, k+1-)US, for each
j,1<j <k, , where S; <0, (je,,k+2~j), and
v A>)=S(je, k+US; for each
Jy -k, +1<j<0, where
S, <O, (je, . k+1+ ).
Moreover,
2a.if Oy (e,,k+1 NS, # D only in the first & -part, then
- Ol(je k+1+ DA () for  each

j,—k,+1<j<0, in alla-parts except,
perhaps, the last two (at n=3 for some j>1,
may be that O(-je,k+1-j)z A(=]j) also in
the second ¢ -part), and
= O)(je, k+2-j)NA=@D for each j,1<j<K,,
only in the first « -part;
2b. if O] (‘(~),k+1)ﬂS1 #@ only in the first two « -parts,
then
* O/(-je, k+1-j)cA(-j) foreach 0<j<k,
in all o -parts, except perhaps in the last o -part,
and
* O/(je,,k+2—j)NA#D only in the first two
a -parts foreach j,0< j<Kk,;
2c. if Oy (e, k+DNS, =@, at least in the first three o -
Ol (—je, k+1-j)<A(-j) for each
j, 0<j<k, (when n=3 for some j>k -1, it can be,
that OS(—je, k+1-j)z A(=]j) in the final fourth « -

part);
2d. if O(e,,k+1)NS, =D in the first ¢« -part and

O (e, k+)NA=@, then O —je( +k—-1 g A€]))
for any j, 0<j<k,, or A=S”(6,k+1)U
W0 %00 % 10D V{@L. LK, +1..—k, +D)},

k,=k,=---=k,, =1,

parts, then

where L XX=%==0,

k+l=n-r-1=r+> (k-1),r>1L

i=r+l
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