Description of Stable Subsets of n-Dimensional Multivalued Discrete Torus

Vilik Karakhanyan Institute for Informatics and Automation Problems, 1, P. Sevak str., Yerevan, 0014, Armenia E-mail: kavilik@gmail.com

ABSTRACT

The n-dimensional torus with generating cycles of even length is considered. Stable subsets of the torus are determined and described.

Keywords

Discrete torus, standard arrangement, stable subset

1. INTRODUCTION

Definition 1. For any integers $1 \le k_1 \le k_2 \le \dots \le k_n < \infty$ the multivalued n-dimensional torus $T^n_{k_1k_2\cdots k_n}$ has been defined of vertices: the as set $T_{k_{i}k_{2}\cdots k_{n}}^{n} = \{(x_{1}, x_{2}, \cdots, x_{n}) / -k_{i} + 1 \le x_{i} \le k_{i}, x_{i} \in \mathbb{Z}, 1 \le i \le n\},\$ where two vertices $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$ of $T_{k_1 k_2 \cdots k_n}^n$ are considered as neighbours, if they differ by exactly one coordinate for which either $|x_i - y_i| = 1$ or the values equal $(-k_i + 1)$ and k_i respectively. The sum and difference of these vectors has been defined in the following way: $z = x \pm y = (x_1 \pm y_1, x_2 \pm y_2, \dots, x_n \pm y_n) = (z_1, z_2, \dots, z_n),$ where $-k_i + 1 \le z_i \le k_i$ and $z_i \equiv (x_i \pm y_i) \pmod{2k_i}$.

We denote by ||x|| the **norm** of a vertex $x = (x_1, x_2, ..., x_n)$ where $||x|| = \sum_{i=1}^{n} |x_i|$, and denote by $\rho(x, y)$ **the distance between the vertices** $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$ where $\rho(x, y) = ||x - y||$.

The set $S^n(x,k) = \{ y \in T^n_{k_k k_2 \cdots k_n} / \rho(x,y) \le k \}$ is called a **sphere** with the centre $x \in T^n_{k_k k_2 \cdots k_n}$ and radius k, and the set $O^n(x,k) = \{ y \in T^n_{k_k k_2 \cdots k_n} / \rho(x,y) = k \}$ is the **envelope** with centre x and radius k.

Let $e_i = (\alpha_1, \alpha_2, ..., \alpha_n)$ denote *the unit vector of i-th direction*, where $\alpha_i = 1$ and $\alpha_j = 0$ for $j \neq i$, and let $\tilde{1}$ and $\tilde{0}$ be the vectors with all 1 and all 0 coordinates respectively: $\tilde{1} = (1, 1, ..., 1)$ and $\tilde{0} = (0, 0, ..., 0)$.

For any subset $A \subseteq T_{k_1k_2\cdots k_n}^n$ and any $i \ (1 \le i \le n)$ and $j \ (-k_i + 1 \le j \le k_i)$ we make the following designation:

$$A + je_i = \{ x + je_i / x \in A \}.$$

We will consider partition of $T_{k_{i}k_{2}\cdots k_{n}}^{n}$ (respectively partition of $A \subseteq T_{k_{i}k_{2}\cdots k_{n}}^{n}$) on *i* -th direction, $1 \le i \le n$ and *j* -th value, $-k_{i} + 1 \le j \le k_{i}$ and will denote by $T_{i}^{n}(j)$ (respectively by $A_{i}(j)$):

$$T_i^n(j) = \{x = (x_1, x_2, \dots x_n) \in T_{k_1 k_2 \dots k_n}^n / x_i = j\},\$$
$$A_i(j) = \{x = (x_1, x_2, \dots x_n) \in A / x_i = j\} = A \cap T_i^n(j).$$

Notice that the intersections of the sphere $S^n(x,k)$ and the envelope $O^n(x,k)$ with the (n-1) -dimensional torus $T_i^n(x_i + j)$, are respectively the sphere and envelope with the centre $x + je_i$ and radius k - |j| in $T_i^n(x_i + j)$. We make the following designations:

$$S_i^n(x+je_i,k-|j|) = \{ y \in S^n(x,k) / y_i = x_i + j \} =$$

= $S^n(x,k) \cap T_i^n(x_i+j);$
 $O_i^n(x+je_i,k-|j|) = \{ y \in O^n(x,k) / y_i = x_i + j \} =$
= $O^n(x,k) \cap T_i^n(x_i+j),$

where in case of k - |j| < 0 these sets are empty: $S_i^n(x + je_i, k - |j|) = O_i^n(x + je_i, k - |j|) = \emptyset$.

It is clear that
$$T_{k_{1}k_{2}\cdots k_{n}}^{n} = \bigcup_{j=-k_{i}+1}^{k_{i}} T_{i}^{n}(j)$$
, $A = \bigcup_{j=-k_{i}+1}^{k_{i}} A_{i}(j)$,
 $S^{n}(x,k) = \bigcup_{j=-k_{i}+1}^{k_{i}} S_{i}^{n}(x+je_{i},k-|j|)$,
 $O^{n}(x,k) = \bigcup_{j=-k_{i}+1}^{k_{i}} O_{i}^{n}(x+je_{i},k-|j|)$,

for each $i, 1 \le i \le n$;

Definition 2. For a given subset $A \subseteq T_{k_{l}k_{2}\cdots k_{n}}^{n}$ we say that a vertex $x \in A$ is an *interior point* of A, if all its neighbouring vertices belong to A. Otherwise $x \in A$ is called *a boundary vertex* of A. We denote by B(A) and $\Gamma(A)$, respectively, the subset of all interior and boundary points of A.

For each $A_i(j)$ in the partition of $A = \bigcup_{j=-k_i+1}^{k_i} A_i(j)$ we denote by $B(A_i(j))$ and $\Gamma(A_i(j))$, respectively, the subsets of its interior and boundary vertices in (n-1) – dimensional torus $T_i^n(j)$.

For any vertex $x = (x_1, x_2, ..., x_n)$ of $T_{k_i k_2 \cdots k_n}^n$, we denote by |x| and $\delta(x)$ the vectors $|x| = (|x_1|, |x_2|, ..., |x_n|)$ and $\delta(x) = (\alpha_1, \alpha_2, ..., \alpha_n)$, where $\alpha_i = 1$ for $x_{n-i+1} > 0$ and $\alpha_i = 0$ for $x_{n-i+1} \le 0$.

In general, for *n*-dimensional vectors $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$ with nonnegative integer coordinates, we say that the vector *x* lexicographically precedes *y* (written by $x \prec y$), if there is a number $r, 1 \le r \le n$, such that $x_i = y_i$ for $1 \le i < r$ and $x_r < y_r$.

Now we order the vertices of the torus $T_{k_1k_2\cdots k_n}^n$ as follows: vertex *x* precedes vertex *y* (written by $x \leftarrow y$), if and only if

- 1. ||x|| < ||y|| or
- 2. ||x|| = ||y|| and $\delta(y)$ lexicographically precedes $\delta(x)$, or
- 3. ||x|| = ||y||, $\delta(x) = \delta(y)$ and |y| lexicographically precedes |x|.

It is easy to check that this ordering between the vertices of the torus $T^n_{k_1k_2\cdots k_n}$ is a linear order.

Definition 3. The first *a* vertices of the torus $T_{k_1k_2\cdots k_n}^n$ by the above determined liner order we call **standard arrangement** of cardinality $a, 0 \le a \le |T_{k_1k_2\cdots k_n}^n|$.

Torus $T_{k_1k_2\cdots k_n}^n$ for $k_1 = k_2 = \cdots = k_n = 1$ is called the ndimensional unit cube, which is denoted by E^n .

For a Boolean vector $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$ the set $\alpha(T_{k_1k_2\dots k_n}^n) = \{x \in T_{k_1k_2\dots k_n}^n \mid \delta(x) = \alpha\}$ is called $\alpha - part$ of the torus $T_{k_1k_2\dots k_n}^n$. It is clear that $T_{k_1k_2\dots k_n}^n = \bigcup_{\alpha \in E^n} \alpha(T_{k_1k_2\dots k_n}^n)$ and all α -parts of the torus are isomorphic. Notice also that α -parts of $T_{k_1k_2\dots k_n}^n$ are arranged according to order \leftarrow .

Let $A = \bigcup_{j=-k_i+1}^{k_i} A_i(j)$. We replace each $A_i(j)$ with the

standard arrangement in $T_i^n(j)$ of the same cardinality, and call this transformation N_i - **normalization** of A with respect to the i - th axis. We denote by $N_i(A)$ the resulting configuration.

It is clear that during N_i - normalization, if some $A_i(j)$ is not the standard arrangement in the corresponding (n-1) - dimensional space $T_i^n(j)$, then instead of some vertices of A we take the same amount of new vertices, precedeing those in the linear ordering \Leftarrow in the $T_{k_ik_2\cdots k_n}^n$. Therefore, if we alternately normalize A with respect to axes 1, 2, ..., n, then after a finite number of steps we obtain *a stable subset* A with respect to N_i - normalization, i.e. $N_i(A) = A$ for each $i, 1 \le i \le n$.

Some properties of the standard arrangement of discrete torus $T_{k_ik_2\cdots k_n}^n$ are proved in [2]; in particular, it is shown that the standard arrangement is stable with respect to N_i - normalization. In this paper we study properties of arbitrary stable subset $A \subseteq T_{k_ik_2\cdots k_n}^n$ with respect to the N_i - normalization.

Observe that in the n-dimensional unit cube the difference between the standard arrangement and stable subsets with respect to the N_i - normalization, - is very small [1].

2. DESCRIPTION OF THE STABLE SUBSETS

Hereafter we shall assume that $n \ge 3$. In this section we give a description of the stable subsets of the discrete torus $T_{k_1k_2\cdots k_n}^n$.

It is proved in [3] that if a subset $A \subseteq T_{k_1k_2\cdots k_n}^n$ is stable with respect to N_i - normalization and $A_n(j_1) = T_n^n(j_1)$ for some $j_1 \ge 1$, then $A_n(j) = T_n^n(j)$ for each $j, -j_1 + 1 \le j \le j_1$. Let $j_0 \ge 1$ be the smallest number that does not satisfy the condition $A_n(j) = T_n^n(j)$. Then, according to the statement E of the theorem proved in [3], subsets $A_n(j_0)$ and $A_n(-j_0+1)$ can be only of the following types:

$$\begin{array}{l} & A_n(-j_0+1) = S_n^n ((-j_0+1)e_n, k+1) \cup S_{-j_0+1}, \\ & A_n(j_0) = S_n^n (j_0e_n, k) \cup S_{j_0}, \\ & \emptyset \neq S_{-j_0+1} \subseteq O_n^n ((-j_0+1)e_n, k+2), \\ & S_{j_0} \subseteq O_n^n (j_0e_n, k+1) \text{ and } k+1 \leq \sum_{i=1}^{n-1} k_i -1; \text{ or} \\ & & A_n (-j_0+1) = S_n^n ((-j_0+1)e_n, k) \cup S_{-j_0+1}, \\ & A_n(j_0) = S_n^n (j_0e_n, k) \cup S_{j_0}, \text{ where} \\ & & S_{-j_0+1} \subseteq O_n^n ((-j_0+1)e_n, k+1), \\ & & \emptyset \neq S_{j_0} \subseteq O_n^n (j_0e_n, k+1) \text{ and } k+1 \leq \sum_{i=1}^{n-1} k_i -1. \end{array}$$

Hereafter, without loss of generality (for simplicity), we shall assume that $j_0 = 1$.

One of the following theorems holds.

Theorem 1. If the set $A \subseteq T_{k_1k_2\cdots k_n}^n$ is the stable subset of the and $A_{n}(0) = S_{n}^{n}(0, k+1) \bigcup S_{0},$ discrete torus $\emptyset \neq S_0 \subseteq O_n^n(\widetilde{0}, k+2),$ where $A_n(1) = S_n^n(e_n, k) \bigcup S_1,$ $k+1 \le \sum_{i=1}^{n-1} k_i - 1$, $S_1 \subseteq O_n^n(e_n, k+1),$ then $A_n(j) = S_n^n(je_n, k+1-|j|) \bigcup S_j$ for each where $S_i \subseteq O_n^n(je_n, k+2-|j|)$. $j, -k_n + 1 \le j \le k_n$,

Moreover,

1a. if $O_n^n(0, k+2) \cap S_0 \neq \emptyset$ only in the first α -part, then

- $O_n^n(je_n, k+2-j) \subseteq A_n(j)$ for each $j, 1 \le j \le k_n$, in all α -parts except, perhaps, the last two (when n=3 and $k_3 \ge j > k+2-k_1$ it could be that $O_3^3(je_3, k+2-j) \not\subset A_3(j)$ also in the second α -part), and
 - $O_n^n(je_n, k+2+j) \bigcap S_j \neq \emptyset$ for each $j, -k_n + 1 \le j \le 0$, only in the first α -part;

1b. if $O_n^n(0, k+2) \cap S_0 \neq \emptyset$ only in the first two α -parts (when $O_n^n(0, k+2) = \{(k_1, k_2, \dots, k_{n-1}, 0)\}$ we have in mind the first two α -parts of the envelope $O_n^n(-e_n, k+1)$, for which $O_n^n(-e_n, k+1) \cap A \neq \emptyset$), then

• $O_n^n(je_n, k+2-j) \subseteq A_n(j)$ for any $j, 1 \le j \le k_n$, in all α -parts, except perhaps in the last α -part, and

 $O_n^n(je_n, k+2+j) \bigcap S_j \neq \emptyset$ for each $j, -k_n + 1 \le j \le 0$, only in the first two α -parts;

1c. if $O_n^n(\tilde{0}, k+2) \cap S_0 \neq \emptyset$ at least in the first three α -parts (at $O_n^n(\tilde{0}, k+2) = \{(k_1, k_2, ..., k_{n-1}, 0)\}$ we have in mind the first three α -parts of the envelope $O_n^n(-e_n, k+1)$, for which $O_n^n(-e_n, k+1) \cap A \neq \emptyset$, then $O_n^n(je_n, k+2-j) \subseteq A_n(j)$ for each $j \leq i \leq k_n$ (when n=3 and $k_2+1 \leq k+2 \leq k_3+k_2-1$ for $j > k_1$ it could be, that $O_3^n(\tilde{0}, k+2) \cap J \neq A_3(j)$ in the final fourth α -part); 1d. if $O_n^n(\tilde{0}, k+2) \cap S_0 = \emptyset$ in the first α -part and $O_n^n(\tilde{0}, k+2) \cap A \neq \emptyset$, then $O_n^n(je_n, k+2-j) \subseteq A_n(j)$ for any $j, 1 \leq j \leq k_n$, or $A = S^n(\tilde{0}, k+1) \cup \cup \left(\bigcup_{i=1}^k O_n^n(je_n, k+2-j)\right) \cup \{(x_1, x_2, ..., x_r, 1, 1, ..., 1, 0)\}$

 $\left\{ \left\{ (1,1,\ldots,1,-k_{r+1}+1,\ldots,-k_{n-1}+1,k_n) \right\}, \text{ where } \\ x_1 = x_2 = \cdots = x_r = 0, \\ k+2 = n-r-1 = r + \sum_{i=r+1}^{n-1} (k_i - 1) + k_n, r \ge 1. \right\}$

Theorem 2. If the set $A \subseteq T_{k_1k_2\cdots k_n}^n$ is the stable subset of the discrete torus and $A_n(0) = S_n^n(\widetilde{0}, k+1) \bigcup S_0$, $A_n(1) = S_n^n(e_n, k) \bigcup S_1$, where $S_0 \subseteq O_n^n(\widetilde{0}, k+1)$, $\emptyset \neq S_1 \subseteq O_n^n(e_n, k+1)$, $k+1 \le \sum_{i=1}^{n-1} k_i - 1$, then

$$✓ A_n(j) = S_n^n(je_n, k+1-j) \cup S_j \quad \text{for each}$$

$$j, 1 \le j \le k_n, \text{ where } S_j \subseteq O_n^n(je_n, k+2-j), \text{ and}$$

$$✓ A_n(j) = S_n^n(je_n, k+j) \cup S_j \quad \text{for each}$$

$$j, -k_n + 1 \le j \le 0, \quad \text{where}$$

$$S_j \subseteq O_n^n(je_n, k+1+j).$$

Moreover,

2a. if $O_n^n(e_n, k+1) \cap S_1 \neq \emptyset$ only in the first α -part, then

- $O_n^n(je_n, k+1+j) \subseteq A_n(j)$ for each $j, -k_n+1 \le j \le 0$, in all α -parts except, perhaps, the last two (at n=3 for some j > 1, may be that $O_3^3(-je_3, k+1-j) \not\subset A_3(-j)$ also in the second α -part), and
- $O_n^n(je_n, k+2-j) \cap A \neq \emptyset$ for each $j, 1 \le j \le k_n$, only in the first α -part;

2b. if $O_n^n(0, k+1) \cap S_1 \neq \emptyset$ only in the first two α -parts, then

- $O_n^n(-je_n, k+1-j) \subseteq A_n(-j)$ for each $0 \le j < k_n$ in all α -parts, except perhaps in the last α -part, and
- $O_n^n(je_n, k+2-j) \cap A \neq \emptyset$ only in the first two α -parts for each $j, 0 < j \le k_n$;

2c. if $O_n^n(e_n, k+1) \cap S_1 \neq \emptyset$, at least in the first three α -parts, then $O_n^n(-je_n, k+1-j) \subseteq A_n(-j)$ for each $j, 0 \le j < k_n$ (when n=3 for some $j > k_1 - 1$, it can be, that $O_3^3(-je_3, k+1-j) \not\subset A_3(-j)$ in the final fourth α -part);

2d. if $O_n^n(e_n, k+1) \cap S_1 = \emptyset$ in the first α -part and $O_n^n(e_n, k+1) \cap A \neq \emptyset$, then $O_n^n - je_n(+k-1) \not\cong A_n \in j$ for any $j, \ 0 \le j < k_n$, or $A = S^n(\widetilde{0}, k+1) \cup \bigcup \{(x_1, x_2, \dots, x_r, 1, 1, \dots, 1, 1)\} \setminus \{(1, 1, \dots, 1, -k_{r+1} + 1, \dots, -k_n + 1)\},$ where $\sum_{1=2}^{n} x_1 \cdots = x_r = 0, \quad k_1 = k_2 = \cdots = k_{r+1} = 1,$ $k+1 = n-r-1 = r + \sum_{i=1}^{n} (k_i - 1), \ r \ge 1.$

REFERENCES

[1] L. H. Aslanyan, V. M. Karakhanyan, B. E. Torosyan, "On the compactness of Subsets of Vertices of the ndimensional unit cube", *Dokl. Akad. Nauk SSSR*, 241, N 1 (1978), pp.11-14, Translation in Soviet Math. Dokl., *American Mathematical Society*, v. 19, 4, pp. 781-785, 1978.

[2] V. Karakhanyan, "SOME SUBSET PROPERTIES OF THE MULTIDIMENSIONAL MULTIVALUED DISCRETE TORUS", International Journal "Information Theories and Applications", Vol. 17, Number 2, 2010-11, pp. 163-177.

[3] Караханян В.М., Устойчивые подмножества многозначного n – мерного дискретного тора, *Computer Science & Information Technologies Conference*, Armenia, Yerevan, September 23-27, 2013, pp.78-80.