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ABSTRACT  

The n-dimensional torus with generating cycles of even 

length is considered. Stable subsets of the torus are 

determined and described. 
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1. INTRODUCTION
Definition 1.  For any integers  nkkk 211  

the multivalued n-dimensional torus n

kkk n
T 21

has been 

defined as the set of vertices: 

},1,,1/),,,{( 2121
niZxkxkxxxT iiiin

n

kkk n
 

where two vertices ),,,( 21 nxxxx   and 

),,,( 21 nyyyy  of n

kkk n
T 21

are considered as 

neighbours, if they differ by exactly one coordinate for 

which either 1||  ii yx  or the values equal )1(  ik  

and 
ik  respectively. The sum and difference of these 

vectors has been defined in the following way: 

,),,,(),,,( 212211 nnn zzzyxyxyxyxz    

where 
iii kzk  1   and )2)(mod( iiii kyxz  . 

We denote by |||| x  the norm of a vertex 

),,,( 21 nxxxx   where 



n

i

ixx
1

|||||| , and denote by 

),( yx the distance between the vertices 

),,,( 21 nxxxx   and ),,,( 21 nyyyy   where 

.||||),( yxyx 

The set }),(/{),(
21

kyxTykxS n

kkk

n

n
    is called a 

sphere with the centre n

kkk n
Tx 21

 and radius k , and the 

set }),(/{),(
21

kyxTykxO n

kkk

n

n
   is the envelope 

with centre x  and radius .k  

Let ),,,( 21 nie    denote the unit vector of i-th 

direction, where 1i  and 0j  for ij   , and let 

1
~

and 0
~

 be the vectors with all 1 and all 0 coordinates 

respectively: )1,,1,1(1
~

  and .)0,,0,0(0
~

  

For any subset n

kkk n
TA 21

 and any )1( nii  and 

)1( ii kjkj   we make the following designation: 

.}/{ AxjexjeA ii   

We will consider partition of n

kkk n
T 21

(respectively 

partition of n

kkk n
TA 21

 )  on i -th direction, ni 1  and 

j -th value, 
ii kjk  1  and will denote by )( jT n

i
 

(respectively by )( jAi
): 

,}/),({)(
212,1 jxTxxxxjT i

n

kkkn

n

i n
   

)(}/),({)( 2,1 jTAjxAxxxxjA n

iini   . 

Notice that the intersections of the sphere ),( kxS n  and 

the envelope ),( kxOn  with the )1( n -dimensional torus 

)( jxT i

n

i  , are respectively the sphere and envelope with 

the centre ijex   and radius || jk  in )( jxT i

n

i  . We 

make the following designations: 

;)(),(

}/),({|)|,(

jxTkxS

jxykxSyjkjexS

i

n

i

n

ii

n

i

n

i







,)(),(

}/),({|)|,(

jxTkxO

jxykxOyjkjexO

i

n

i

n

ii

n

i

n

i







where in case of 0||  jk  these sets are empty: 

Ø|)|,(|)|,(  jkjexOjkjexS i

n

ii

n

i . 

It is clear that  

i

i

n

k

kj

n

i

n

kkk jTT
1

)(
21



  , ,)(
1


i

i

k

kj

i jAA


  

,|)|,(),(
1


i

i

k

kj

i

n

i

n jkjexSkxS




,|)|,(),(
1


i

i

k

kj

i

n

i

n jkjexOkxO




for each ;1, nii   

Definition 2.  For a given subset n

kkk n
TA 21

  we say that a 

vertex Ax  is an interior point of A , if all its 

neighbouring vertices belong to .A  Otherwise Ax  is 

called  a  boundary vertex of .A  We denote by )(AB  and 

,)(A  respectively, the subset of all interior and 

boundary points of .A  



For each )( jAi
 in the partition of 

i

i

k

kj

i jAA
1

)(


 we 

denote by ))(( jAB i
and ))(( jAi , respectively, the 

subsets of its interior and boundary vertices in )1( n – 

dimensional torus .)( jT n

i

For any vertex ),,,( 21 nxxxx   of n

kkk n
T 21

, we denote by 

|| x  and )(x  the vectors |)|,|,||,(||| 21 nxxxx   and 

),,,()( 21 nx   , where 1i  for 01 inx  and 

0i  for .01 inx

In general, for n -dimensional vectors ),,,( 21 nxxxx   

and ),,,( 21 nyyyy   with nonnegative integer 

coordinates, we say that the vector x  lexicographically 

precedes y  (written by yx  ), if there is a number 

,1, nrr   such that 
ii yx   for ri 1  and .rr yx   

Now we order the vertices of the torus n

kkk n
T 21

 as follows: 

vertex x  precedes vertex y  (written by yx ), if and 

only if  

1. |||||||| yx   or

2. |||||||| yx  and )( y  lexicographically precedes

)(x  , or

3. |||||||| yx  , )()( yx   and || y  

lexicographically  precedes .|| x

It is easy to check that this ordering between the vertices 

of the torus n

kkk n
T 21

 is a linear order. 

Definition 3.  The first a  vertices of the torus n

kkk n
T 21

by 

the above determined liner order we call standard 

arrangement of cardinality .||0,
21

n

kkk n
Taa 

Torus n

kkk n
T 21

for 121  nkkk   is called the n - 

dimensional unit cube, which is denoted by .nE  

For a Boolean vector ),,,( 21 n   the set 

})(/{)(
2121

  xTxT n

kkk

n

kkk nn   is called  - part of the 

torus .
21

n

kkk n
T   It is clear that )(

2121

n

kkk

E

n

kkk n
n

n
TT   



  and 

all   -parts of the torus are isomorphic. Notice also that  - 

parts of n

kkk n
T 21

 are arranged according to order .  

Let .)(
1


i

i

k

kj

i jAA


  We replace each )( jAi
 with the 

standard arrangement in )( jT n

i
 of the same cardinality, 

and call this transformation 
iN - normalization of A  with 

respect to the i - th axis. We denote by .)(AN i
the 

resulting configuration. 

It is clear that during 
iN - normalization, if some )( jAi

 is 

not the standard arrangement in the corresponding  )1( n - 

dimensional space )( jT n

i
, then instead of some vertices of 

A  we take the same amount of new vertices, precedeing 

those in the linear ordering   in the n

kkk n
T 21

. Therefore, if 

we alternately normalize A  with respect to axes 1, 2, ..., n, 

then after a finite number of steps we obtain a stable subset 

A  with respect to 
iN  - normalization, i.e. AAN i )(   for 

each .1, nii   

Some properties of the standard arrangement of discrete 

torus n

kkk n
T 21

 are proved in [2]; in particular, it is shown 

that the standard arrangement  is stable with respect to 

iN - normalization. In this paper we study properties of 

arbitrary stable subset n

kkk n
TA 21

  with respect to the 
iN - 

normalization. 

Observe that in the n-dimensional unit cube the 

difference between the standard arrangement  and stable 

subsets with respect to the 
iN - normalization, - is very 

small [1]. 

2. DESCRIPTION  OF  THE  STABLE
SUBSETS 

Hereafter we shall assume that 3n . In this section we 

give a description of the stable subsets of the discrete torus 
n

kkk n
T 21

. 

It is proved in [3] that if a subset n

kkk n
TA 21

  is stable with 

respect to 
iN - normalization and )()( 11 jTjA n

nn   for 

some 11j , then )()( jTjA n

nn   for each 

.1, 11 jjjj   Let 10 j  be the smallest number that 

does not satisfy the condition )()( jTjA n

nn  . Then, 

according to the statement E of the theorem proved in [3], 

subsets )( 0jAn and )1( 0  jAn can be only of the 

following types: 

   ,1,)1()1( 100 0 jn

n

nn SkejSjA 

  ,,)(
000 jn

n

nn SkejSjA  where 

),2,)1((Ø 010
  kejOS n

n

nj

)1,( 00
 kejOS n

n

nj  and 





1

1

11
n

i

ikk ;  or 

   ,,)1()1( 100 0 jn

n

nn SkejSjA 

  ,,)(
000 jn

n

nn SkejSjA  where 

),1,)1(( 010
 kejOS n

n

nj

)1,(Ø 00
 kejOS n

n

nj   and 





1

1

11
n

i

ikk . 

Hereafter, without loss of generality (for simplicity), we 

shall assume that 10 j . 

One of the following theorems holds. 



Theorem 1. If the set n

kkk n
TA 21

  is the stable subset of the 

discrete torus and ,)1,0
~

()0( 0SkSA n

nn 

,),()1( 1SkeSA n

n

nn   where ),2,0
~

(Ø 0  kOS n

n
 

),1,(1  keOS n

n

n
 






1

1

11
n

i

ikk , then 

jn

n

nn SjkjeSjA |)|1,()(  for each 

nn kjkj  1, , where )||2,( jkjeOS n

n

nj  . 

Moreover, 

1a. if Ø)2,0
~

( 0  SkOn

n    only in the first  -part, then 

 )()2,( jAjkjeO nn

n

n   for each ,1, nkjj   

in all -parts except, perhaps, the last two 

(when 3n  and 
13 2 kkjk   it could be 

that )()2,( 33

3

3 jAjkjeO   also in the second 

 -part), and 

  Ø)2,(  jn

n

n SjkjeO   for each 

,01,  jkj n  only in the first  -part; 

1b. if Ø)2,0
~

( 0  SkOn

n   only in the first two  -parts 

(when )}0,,,,{()2,0
~

( 121  n

n

n kkkkO   we have in mind 

the first two  -parts  of  the envelope )1,(  keO n

n

n , for 

which Ø)1,(  AkeO n

n

n  ), then 

 )()2,( jAjkjeO nn

n

n   for any nkjj 1, , 

in all  -parts, except perhaps in the last  -part, 

and 

 Ø)2,(  jn

n

n SjkjeO    for each 

01,  jkj n , only in the first two  -parts; 

1c. if Ø)2,0
~

( 0  SkOn

n   at least in the first three  -parts 

(at )}0,,,,{()2,0
~

( 121  n

n

n kkkkO   we have in mind the 

first three  -parts  of the envelope )1,(  keO n

n

n , for 

which Ø)1,(  AkeO n

n

n  ), then 

)()2,( jAjkjeO nn

n

n   for each   nkjj 1,  (when  

3n  and 121 232  kkkk  for 1kj   it could be, 

that )()2,( 33

3

3 jAjkjeO   in the final fourth  -part); 

 1d. if Ø)2,0
~

( 0  SkOn

n   in the first  -part and 

Ø)2,0
~

(  AkOn

n  , then   )()2,( jAjkjeO nn

n

n   for 

any nkjj 1, , or )1,0
~

(  kSA n
 

 \)0,1,,1,1,,,,()2,( 21

1

  r

k

j

n

n

n xxxjkjeO
n


















 ),1,,1,1,,1,1(\ 11 nnr kkk    , where 

021  rxxx  , 1121  rkkk  , 

.1,)1(12
1

1

 




rkkrrnk n

n

ri

i

Theorem  2.  If the set n

kkk n
TA 21

  is the stable subset of 

the discrete torus and ,)1,0
~

()0( 0SkSA n

nn 

,),()1( 1SkeSA n

n

nn   where ),1,0
~

(0  kOS n

n  

),1,(Ø 1  keOS n

n

n  





1

1

11
n

i

ikk , then 

 jn

n

nn SjkjeSjA )1,()(  for each 

nkjj 1, , where ),2,( jkjeOS n

n

nj   and 

 jn

n

nn SjkjeSjA ),()(  for each 

01,  jkj n , where  

)1,( jkjeOS n

n

nj  . 

Moreover, 

2a. if Ø)1,( 1  SkeO n

n

n   only in the first -part, then 

 )()1,( jAjkjeO nn

n

n  for each 

01,  jkj n , in all -parts except, 

perhaps, the last two (at 3n  for some 1j , 

may be that )()1,( 33

3

3 jAjkjeO   also in 

the second  -part), and 

 Ø)2,(  AjkjeO n

n

n   for each nkjj 1, , 

only in the first  -part; 

2b. if Ø)1,0
~

( 1  SkOn

n   only in the first two  -parts, 

then 

 )()1,( jAjkjeO nn

n

n   for each  nkj0

in all  -parts, except perhaps in the last  -part, 

and 

 Ø)2,(  AjkjeO n

n

n  only in the first two 

 -parts for each  nkjj 0, ; 

2c. if Ø)1,( 1  SkeO n

n

n  , at least in the first three  -

parts, then )()1,( jAjkjeO nn

n

n   for each 

nkjj 0,  (when 3n  for some 11  kj , it can be, 

that )()1,( 33

3

3 jAjkjeO   in the final fourth  -

part); 

 2d. if Ø)1,( 1  SkeO n

n

n   in the first  -part and  

Ø)1,(  AkeO n

n

n  , then  )()1,( jAjkjeO nn

n

n 

for any nkjj 0, , or )1,0
~

(  kSA n
 

 )1,1,,1,1,,,,( 21  rxxx  )1,,1,1,,1,1(\ 1   nr kk  ,

where 021  rxxx  , 1121  rkkk  ,  

.1,)1(11
1

 


rkrrnk
n

ri

i

REFERENCES 
[1] L. H. Aslanyan, V. M. Karakhanyan, B. E. Torosyan, 

”On the compactness of Subsets of Vertices of the n-

dimensional unit cube”, Dokl. Akad. Nauk SSSR, 241, N 1 

(1978), pp.11-14, Translation in Soviet Math. Dokl., 

American Mathematical Society, v. 19, 4, pp. 781-785, 1978. 

[2] V. Karakhanyan,   ''SOME SUBSET PROPERTIES OF 

THE MULTIDIMENSIONAL MULTIVALUED 

DISCRETE TORUS'', International Journal “Information 

Theories and Applications”, Vol. 17, Number 2, 2010-11, 

pp. 163-177. 

[3] Караханян В.М., Устойчивые подмножества 

многозначного n – мерного дискретного тора, Computer 

Science & Information Technologies Conference, Armenia, 

Yerevan,  September 23-27, 2013, pp.78-80. 




