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ABSTRACT
The gossip problem, also the k-fault-tolerant gossiping,
where at most k arbitrary faults of calls are allowed, is
investigated. It is shown that for providing the stability
of fault-tolerant gossip scheme, an application of some
well designed error detection/correction technique is im-
plied to address the failures specific to information dis-
semination. The fault-tolerant code introduced is based
on edge redundancy, meanwhile the method underlying
the construction of robust k-fault-tolerant gossiping ex-
ploits peculiarities of hypercube expander graphs. Effi-
ciency of the construction is also considered.
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1. INTRODUCTION
Robustness and stability are desired properties for any
distributed computing environment, and thus for any
communication system, where nodes represent proces-
sors, and edges represent communication links between
the nodes. One of the major problems in the design of
multi component systems is the presence of faults, and
thus, the development of efficient techniques for fault
handling is of a practical importance. Meanwhile, the
fault tolerance is achieved through some degree of re-
dundancy introduced specifically to address the given
communication problem. The gossip problem, first pro-
posed by Boyd, and also known as a telephone problem,
concerns the information dissemination, where each of n
nodes of a communication network has a unique piece of
information that must be transmitted to all the other
nodes using two-party telephone calls initiated to ex-
change every piece of information available at the time
of the call. By the end, every node gets everyone else’s
information with a restriction that no node receives own
piece of information from another node. A k-fault -
tolerant graph is a multi graph with linearly ordered
edges such that for any ordered pair of vertices u and
v, there are k + 1 edge-disjoint ascending paths from u
to v.
The gossiping problem is to find the minimum number
of calls achieving the information dissemination, and
can be modeled by an ordered graph G, where each ver-
tex (respectively, edge) corresponds to a unique party
(respectively, telephone call), and edge-ordering indi-
cates the ordering of two-party telephone calls. A ver-

tex v receives the message originated from a vertex u if
and only if there is an ascending path from u to v in
the ordered graph G. The gossiping for n communicat-
ing parties is modeled by a corresponding gossip graph
over n vertices. The minimum number of calls for n
parties (respectively, nodes) was determined earlier to
be 2n− 4 [1, 2, 3, 4], then certain improvements of the
upper bounds were introduced in [5, 6].
Let τ (n, k) denotes the minimum number of edges in
a k-fault tolerant gossip graph with n vertices. T. Ha-
sunuma and H. Nagamochi [7] proved that the upper
bound on the calls,

τ(n, k) ≤ 1

2
nk +O(n logn). (1)

Construction of k-fault-tolerant gossip scheme based on
Wheel graph [8] represents a further improvement of the
upper bound:

τ(n, k) ≤ 2

3
nk +O(n logn) (2)

for general n and k.

2. MATHEMATICAL PRELIMINARIES
The construction of an error detection/correction code
for a robust k-fault tolerant gossip scheme involves tech-
niques for tolerating edge fault (missed calls) in gossip
graphs based on adding a definite number of redundant
edges. This provides maintenance of the underlying bi-
nary relation of the original graph in the presence of
edge faults. Meanwhile, edge redundancy is realized
through involvement of an appropriate expander graph
motivating the selection by the circumstance that math-
ematical apparatus of expander graphs [9] are well stud-
ied and approved. For the whole family of expanders ev-
ery predefined set of vertices has many neighbors, and
this very circumstance makes it possible to design a suit-
able error detection/correction technique.
In this model the architecture is viewed as a graph,
where the nodes represent the processors and the edges
represent communication links between the nodes. A
target gossip graph G(V,E), where V is the set of ver-
tices, and E is the set of edges, is selected and the
required amount of fault tolerance, f , is determined.
Then a fault tolerant graph G′(V ′ ⊃ V, E′ ⊃ E) is de-
fined with the property that given any set of f or fewer
faulty edges, the remaining graph, after removal of the
faulty edges, is guaranteed to contain the target graph
as a subgraph. Note that this approach guarantees that
any algorithm designed for the target graph will run
with no slowdown in the presence of f or fewer edge
faults in the fault tolerant graph, regardless of their dis-
tribution. Minimizing the cost in this model amounts to



constructing a fault tolerant graph with minimum de-
gree. Thus, construction of fault tolerant gossip graph
is equivalent to the construction of a generator matrix
for error detection/correction codes.
Fault-tolerant model is developed by using a d-dimensional
hypercube network consisted of 2d nodes encoded with
d-bit binary codewords. Each node has d neighbors.
For the purpose, the expander hypercube code is pa-
rameterized by a fixed-size code C for the regular ex-
pander graph Gd with constant degree d. The degree of
the expander dictates uniform encoding and fixed-size
length for the codewords, equal to d. The rate and dis-
tance of the new code depend on the rate and distance
of C. If the Hamming distance of any two codewords
of a code C ≥ dmin, the code is said to have mini-
mum distance dmin. The error detection and correction
properties of a code are determined in part of its min-
imum distance. For a given dmin,at least dmin errors
are needed to transform a valid codeword to another.
If there are fewer than dmin errors, the received invalid
codeword is detected, then the latter is compared to all
the valid codewords in the codebook to find the closest
valid codeword to replace with. This makes it possible
to deduce the original codeword, and thus the error cor-
rection can be achieved. The relative distance, denoted
by δ, is the ratio of the distance to the codewords’ block
length, i.e. δ = dmin/n.
Generally, a code provides t error correction and s ad-
ditional error detection if and only if the following in-
equality holds.

2t+ s+ 1 ≤ dmin. (3)

The equation (3) suggests that a single error detection
code, for which s = 1, t = 0, requires a dmin = 2, as
for single parity check codes. A single error correction
code, for which s = 0, t = 1, requires a dmin = 3, and
a code with both single error correction and 2 more er-
rors detection, for which s = t = 1, requires a minimum
distance of 4.
The error detection and correction capabilities of a code
are conditioned by the number of check bits and how
the check bits are distributed over the information bits,
not necessarily to be uniform. A good error detec-
tion/correction capability for a code suggests partial
overlapping of information bits, which, particularly, may
be obtained through application of m-out-of n codes.
Concerned with algorithmic realization of the code, po-
sitioning the check bits may be in powers of two posi-
tions, or allocated to the left/right in the codeword. For
n number of bits for a codeword and k check bits, the
code rate is k/n.
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Figure 1. Hypercube expander

For the hypercube above, the codebook contains only
2 valid codewords, namely, 000 and 111. The other six

invalid codewords are deduced to the closest valid code-
words, thus correcting the error. Three changed bits
between the valid codewords results in hamming dis-
tance of 3. For the hypercube, dmin = d, the fixed-size
length of the codewords is also d.
Construction of error detection/correction code implies
the following steps:
• The codewords’ length is determined to be nd, where
n is the number of the expander vertices, d is the degree
of vertices, equal to dmin of the code.
•Edges are enumerated according to gossiping prefer-
ences
•The decimal value of the edge number flips the appro-
priate bit in the codeword bitstring to one.
• Cutson the expander may also be encoded, flipping
the cut frame edge indicators to one.

The expander code construction due to Zemor [10] uses
the fixed size code C of block length d and an expander
gaph G on n vertices and degree d into a new code
Z = Z(C,G) with block length nd. The rate and the
distance of the new code Z depend on rate and distance
r and dmin of C, and on the spectral expansion λ of G.
The hypercube expander HE(C,G) is constructed to be
a supergraph for the original gossip graph G endowed
with n vertices and predefined set of edges, each of nd
bit of length, as the newly constructed HE(C,G) graph
has nd number of edges. Resultant HE is regular and
has 2n number of vertices in left and right vertex sets
L and R. For an edge e ∈ E with end points u and v
in V , both uL in L to vR in R and vL in L to uR in R
are connected. This creates a d-regular 2n-vertex bipar-
tite graph G′. Since the graph G′ is constructed from
an original G with spectral expansion λ, the expander
mixing lemma [10] can be applied to this graph. Thus,
for all sets S ⊂ L and T ⊂ R, we have that

|e(S, T )− d
|S||T |
n

| ≤ λd
√

|S||T |, (4)

where e(S, T ) represents the number of edges between
the sets S and T .
The codewords for the G′ graph are dn bits long, and
G′ has dn edges. Each bit position in the codeword is
associated with an edge in G′. Aiming maintenance of
gossip networks’ paradigms, we can assume that edges
incident to a gossip vertex obey to some predefined or-
dering, and this ordering takes place even if the certain
codeword x is corrupted or lost. Thus, x ∈ {0, 1}nd is a
codeword, e1, e2, , ed are incident edges of the vertex v,
therefore xv = (xe1 , xe2 , , xed) ∈ {0, 1}d, and this asso-
ciation takes place even if x is corrupted by the channel.

Note that linearity of the code C implies the linearity of
G′. For a C code with [d, rd, δd]− code with rate r <
1/2 and a d-regular expander with λ < δ, the Z(C,G)
code is [nd, (2r − 1)nd, δ(δ − λ)nd] code [11].
Decoding for the expander is a recursive procedure, mean-
while, all the calculations for a chosen vertex is fully
localized, and can be parallelized in a multiprocessor
system. Also, linearity of the construction ensures high
efficiency of the resolution. Thus, for the received xv

codeword, local decoding for Z(C,G) involves search-
ing for the received codeword in C, if xv /∈ C, for each
v ∈ Vi to decode xv to the nearest codeword in C while
considering both left and right partitions L and R on
the expander.



Another important characteristic for a code is its decod-
ing error probability, when the received codeword, ap-
plied the dmin criterion, is decoded/deduced incorrectly.
Another failure that also should not be neglected, is that
the number of errors exceeds dmin, and no deducing is
possible to even select one or more closer codewords.
The latter happens when more than two deduced vec-
tors match to dmin, called as ambiguity in decoding.
This case is referred to as decoding failure vs. decod-
ing error. This points out to the need for involving
additional techniques for error detection/correction ex-
ploiting not only the minimum distance parameter.

To address decoding failure, we propose an additional
protective mechanism to detect and fix ambiguity in de-
coding: application of an efficient systematic code with
code rate 1/2. For this purpose, a quasigroup (Q, ∗, /, |)
of order 2d endowed with three non associative opera-
tions is proposed [12].

Error correction is performed by exploiting the orthogo-
nal parastroph of the given quasigroup. As the elements
of the quasigroup are closely correlated to each other,
the latter provides diffusion of the error within the code
block. This results in detection of the error on the stage
of the quasigroup equipped correction code, then, on the
higher level of decoding, the minimum distance bounded
decoding will deduce the received erroneous codeword
to a closest valid codeword. Let C be an (n, k) code
over GF (q) with minimum distance d, where q stands
for the base of computation. We assume C is being used
to correct t errors, where t is a fixed integer satisfying
the equation (3). Quasigroup equipped robust gossip
code construction is demonstrated for a bipartite regu-
lar expander with |L| = |R| = 4vertices. For the given
bipartite graph G4,4 partitioned to equivalence classes
{{1, 3, 5, 7}, {2, 4, 6, 8}}, a quasigroup of order 8 can be
generated as follows:

Table 1. A quasigroup of order 8

* 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8

2 3 4 5 6 7 8 1 2

3 5 6 7 8 1 2 3 4

4 7 8 1 2 3 4 5 6

5 8 7 6 5 4 3 2 1

6 2 1 4 3 6 5 8 7

7 4 3 8 7 2 1 6 5

8 6 3 2 1 8 7 4 3

The code using a quasigroup so generated will exploit
the operation ∗ (the Cayley table of the quasigroup)
over the codewords derived for the expander. In order to
fix ambiguity in decoding, we extend the input message
a1 a2 a3 ... an to the block a1 a2 a3 ... an d1 d2 d3 ... dn,
where di = ai ∗ ai+1modn, i = 1, 2, 3, ..., n.

4. CONCLUSION
The code designed exploits the well-known characteris-
tics of linear codes and expanders. From the whole fam-
ily of expanders, the hypercube model is selected which
exhibits all the essential properties of gossip graphs,
meanwhile the fault-tolerant code is constructed based
on the Zemor code. To address ambiguity problem

specific to minimum distance codes, an additional sys-
tematic encoding/decoding based on orthogonal quasi-
groups is involved.
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