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a b s t r a c t

We prove two sufficient conditions for Hamiltonian cycles in balanced bipartite digraphs.
Let D be a strongly connected balanced bipartite digraph of order 2a. Then:

(i) If a ≥ 4 and max{d(x), d(y)} ≥ 2a − 1 for every pair of vertices {x, y} with a common
out-neighbour, then either D is Hamiltonian or D is isomorphic to a certain digraph of order
eight which we specify.

(ii) If a ≥ 4 and d(x) + d(y) ≥ 4a − 3 for every pair of vertices {x, y} with a common
out-neighbour, then D is Hamiltonian.

The first result improves a theorem of Wang and the second result, in particular,
establishes a conjecture due to Bang-Jensen, Gutin and Li for strongly connected balanced
bipartite digraphs of orders at least eight.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Weconsider directed graphs (digraphs) in the sense of [7]. Every cycle and path is assumed simple and directed. A digraph
D is Hamiltonian if it contains a cycle passing through all the vertices of D. There are many conditions that guarantee
that a digraph is Hamiltonian (see, e.g., [7,10,14,20,21,26]). Let us recall the following well-known degree conditions
(Theorems 1.1–1.4).

Theorem 1.1 (Nash-Williams [24]). Let D be a digraph of order n ≥ 3 such that for every vertex x, d+(x) ≥ n/2 and d−(x) ≥ n/2,
then D is Hamiltonian.

Theorem 1.2 (Ghouila-Houri [16]). Let D be a strongly connected digraph of order n ≥ 3. If d(x) ≥ n for all vertices x ∈ V (D),
then D is Hamiltonian.

Theorem 1.3 (Woodall [28]). Let D be a digraph of order n ≥ 3. If d+(x) + d−(y) ≥ n for all pairs of vertices x and y such that
there is no arc from x to y, then D is Hamiltonian.

Theorem 1.4 (Meyniel [23]). Let D be a strongly connected digraph of order n ≥ 2. If d(x) + d(y) ≥ 2n − 1 for all pairs of
non-adjacent vertices in D, then D is Hamiltonian.

It is easy to see that Meyniel’s theorem is a generalization of Nash-Williams’, Ghouila-Houri’s and Woodall’s theorems.
A short proof of Theorem 1.4 can be found in [12].
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For bipartite digraphs, an analogue of Nash-Williams’ theoremwas given by Amar andManoussakis in [5]. An analogue of
Woodall’s theorem was given by Manoussakis and Millis in [22], and strengthened by Adamus and Adamus [3]. The results
analogous to the above-mentioned theorems of Ghouila-Houri and Meyniel for bipartite digraphs were given by Adamus,
Adamus and Yeo [4].

Theorem 1.5 (Adamus, Adamus, Yeo [4]). Let D be a balanced bipartite digraph of order 2a, where a ≥ 2. Then D is Hamiltonian
provided one of the following holds:

(a) d(u) + d(v) ≥ 3a + 1 for every pair of non-adjacent distinct vertices u and v of D;
(b) D is strongly connected and d(u) + d(v) ≥ 3a for every pair of non-adjacent distinct vertices u and v of D;
(c) the minimal degree of D is at least (3a + 1)/2;
(d) D is strongly connected and the minimal degree of D is at least 3a/2.

Some sufficient conditions for the existence of Hamiltonian cycles in a bipartite tournament are described in the survey
paper [18] by Gutin. A characterization for hamiltonicity for semicomplete bipartite digraphs was obtained independently
by Gutin [17] and Häggkvist and Manoussakis [19].

Notice that each of Theorems 1.1–1.4 imposes a degree condition on all pairs of non-adjacent vertices (or on all vertices).
In the following theorems a degree condition requires only for some pairs of non-adjacent vertices.

Theorem 1.6 (Bang-Jensen, Gutin, Li [8]). Let D be a strongly connected digraph of order n ≥ 2. Suppose that min{d(x), d(y)} ≥

n − 1 and d(x) + d(y) ≥ 2n − 1 for every pair of non-adjacent vertices x, y with a common in-neighbour. Then D is Hamiltonian.

Theorem 1.7 (Bang-Jensen, Guo, Yeo [6]). Let D be a strongly connected digraph of order n ≥ 2. Suppose that min{d+(x) +

d−(y), d−(x)+d+(y)} ≥ n−1 and d(x)+d(y) ≥ 2n−1 for every pair of non-adjacent vertices x, y with a common in-neighbour
or a common out-neighbour. Then D is Hamiltonian.

An analogue of Theorem 1.6 for bipartite balanced digraphs was given by Wang [27].

Theorem 1.8 (Wang [27]). Let D be a strongly connected balanced bipartite digraph of order 2a, where a ≥ 1. Suppose that,
for every pair of vertices {x, y} with a common out-neighbour, either d(x) ≥ 2a − 1 and d(y) ≥ a + 1 or d(y) ≥ 2a − 1 and
d(x) ≥ a + 1. Then D is Hamiltonian.

In [8], Bang-Jensen, Gutin and Li raised the following two conjectures.

Conjecture 1 (Bang-Jensen, Gutin, Li [8]). Let D be a strongly connected digraph of order n ≥ 2. Suppose that d(x)+d(y) ≥ 2n−1
for every pair of non-adjacent vertices x, y with a common in-neighbour or a common out-neighbour. Then D is Hamiltonian.

Conjecture 2 (Bang-Jensen, Gutin, Li [8]). Let D be a strongly connected digraph of order n ≥ 2. Suppose that d(x)+d(y) ≥ 2n−1
for every pair of non-adjacent vertices x, y with a common in-neighbour. Then D is Hamiltonian.

Adamus [1] proved a bipartite analogue of Conjecture 1.

Theorem 1.9 (Adamus [1]). Let D be a strongly connected balanced bipartite digraph of order 2a ≥ 6. If d(x) + d(y) ≥ 3a for
every pair of vertices x, y with a common out-neighbour or a common in-neighbour, then D is Hamiltonian.

The above-mentioned result of Wang and Conjecture 2 were the main motivation for the present work.
Using some ideas and arguments of [27], in this paper we prove the following Theorems 1.10 and 1.11. For a ≥ 4

Theorem 1.10 improves the theorem of Wang. Theorem 1.11, in particular, establishes Conjecture 2 for bipartite digraphs of
orders at least 8 in a strong form.

Theorem 1.10. Let D be a strongly connected balanced bipartite digraph of order 2a ≥ 8. Suppose that max{d(x), d(y)} ≥ 2a− 1
for every pair of vertices x, y with a common out-neighbour. Then D is Hamiltonian unless D is isomorphic to the digraph D(8) (for
definition of D(8), see Example 1).

Theorem 1.11. Let D be a strongly connected balanced bipartite digraph of order 2a ≥ 8. Suppose that d(x) + d(y) ≥ 4a − 3 for
every pair of vertices x, y with a common out-neighbour. Then D is Hamiltonian.

Observe that Theorem 1.11 and Wang’s (when a ≥ 4) theorem are immediate consequences of Theorem 1.10.

2. Terminology and notation

Terminology and notation not described below follow [7]. In this paper we consider finite digraphs without loops and
multiple arcs. The vertex set and the arc set of a digraph D are denoted by V (D) and by A(D), respectively. The order of D is
the number of its vertices. For any x, y ∈ V (D), we also write x → y if xy ∈ A(D). If xy ∈ A(D), then we say that x dominates
y or y is an out-neighbour of x and x is an in-neighbour of y. The notation x ↔ y denotes that x → y and y → x (x ↔ y is
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called a 2-cycle). Let x, y be distinct vertices in a digraph D. The pair {x, y} called dominating if there is a vertex z in D such
that x → z and y → z.

For disjoint subsets A and B of V (D) we define A(A → B) as the set {xy ∈ A(D) : x ∈ A, y ∈ B}; A(A, B) = A(A → B)∪A(B →

A). If x ∈ V (D) and A = {x} we sometimes will write x instead of {x}. A → B means that every vertex of A dominates every
vertex of B; A ↦→ Bmeans that A → B and there is no arc from B to A.

Let N+(x), N−(x) denote the set of out-neighbours, respectively the set of in-neighbours of a vertex x in a digraph D. If
A ⊆ V (D), then N+(x, A) = A ∩ N+(x), N−(x, A) = A ∩ N−(x) and N+(A) = ∪x∈AN+(x). The out-degree of x is d+(x) = |N+(x)|
and d−(x) = |N−(x)| is the in-degree of x. Similarly, d+(x, A) = |N+(x, A)| and d−(x, A) = |N−(x, A)|. The degree of the vertex
x in D is defined as d(x) = d+(x) + d−(x) (similarly, d(x, A) = d+(x, A) + d−(x, A)). The subdigraph of D induced by a subset
A of V (D) is denoted by D⟨A⟩.

For integers a and b, a ≤ b, let [a, b] denote the set of all integers which are not less than a and are not greater than b.
The path (respectively, the cycle) consisting of the distinct vertices x1, x2, . . . , xm (m ≥ 2) and the arcs xixi+1, i ∈ [1,m−1]

(respectively, xixi+1, i ∈ [1,m − 1], and xmx1), is denoted by x1x2 · · · xm (respectively, x1x2 · · · xmx1). We say that x1x2 · · · xm
is a path from x1 to xm or is an (x1, xm)-path. Given a vertex x of a directed path P or a directed cycle C , we denote by x+

(respectively, by x−) the successor (respectively, the predecessor) of x (on P or C), and in case of ambiguity, we precise P or
C as a subscript (that is x+

P . . . ).
A cycle that contains all the vertices of D is a Hamiltonian cycle. A digraph D is Hamiltonian if it contains a Hamiltonian

cycle. If P is a path containing a subpath from x to y, then by P[x, y]wedenote that subpath. Similarly, if C is a cycle containing
vertices x and y, C[x, y] denotes the subpath of C from x to y (possibly, x = y). A digraph D is strongly connected (or, just,
strong) if there exists an (x, y)-path in D for every ordered pair of distinct vertices x, y of D.

Two distinct vertices x and y are adjacent if xy ∈ A(D) or yx ∈ A(D) (or both).
Let H be a non-trivial proper subset of V (D). An (x, y)-path P is a H-bypass if |V (P)| ≥ 3, x ̸= y and V (P) ∩ H = {x, y}.
A cycle factor in D is a collection of vertex-disjoint cycles C1, C2, . . . , Cl such that V (C1) ∪ V (C2) ∪ · · · ∪ V (Cl) = V (D). A

digraph D is bipartite if there exists a partition X , Y of V (D) into two partite sets such that every arc of D has its end-vertices
in different partite sets. It is called balanced if |X | = |Y |. A matching from X to Y is an independent set of arcs with origin in
X and terminus in Y . (A set of arcs with no common end-vertices is called independent). If D is balanced, one says that such
a matching is perfect if it consists of precisely |X | arcs.

Definition 2.1. Let D be a balanced bipartite digraph of order 2a, where a ≥ 2. For any integer k, we will say that D satisfies
condition Bk whenmax{d(x), d(y)} ≥ 2a − 2 + k for every dominating pair of vertices {x, y}.

The underlying undirected graph of a digraph D, denoted by UG(D), it contains an edge xy if x → y or y → x (or both).

3. Examples

In this section we present some examples of balanced bipartite digraphs which we will use in the next sections to show
that the conditions of our results (the lemmas and the theorems) are sharp in some situation.

Example 1. Let D(8) be a bipartite digraph with partite sets X = {x0, x1, x2, x3} and Y = {y0, y1, y2, y3}, and the arc set
A(D(8)) contains exactly the following arcs y0x1, y1x0, x2y3, x3y2 and all the arcs of the following 2-cycles: xi ↔ yi, i ∈ [0, 3],
y0 ↔ x2, y0 ↔ x3, y1 ↔ x2 and y1 ↔ x3.

It is easy to see that

d(x2) = d(x3) = d(y0) = d(y1) = 7 and d(x0) = d(x1) = d(y2) = d(y3) = 3,

and the dominating pairs in D(8) are: {y0, y1}, {y0, y2}, {y0, y3}, {y1, y2}, {y1, y3}, {x0, x2}, {x0, x3}, {x1, x2}, {x1, x3} and {x2, x3}.
Note that every dominating pair satisfies condition B1. Since x0y0x3y2x2 y1x0 is a cycle in D(8), it is not difficult to check that
D(8) is strong.

Observe that D(8) is not Hamiltonian. Indeed, if C is a Hamiltonian cycle in D(8), then C would contain the arcs x1y1 and
x0y0. Therefore, C would contain the path x1y1x0y0 or the path x0y0x1y1, which is impossible since N−(x0) = N−(x1) =

{y0, y1}.
Notice that the digraph D(8) does not satisfy the conditions of Wang’s theorem.

Example 2. Let D(6) be a bipartite digraph with partite sets X = {x1, x2, x3} and Y = {y1, y2, y3}, and arc set A(D(6)) =

{xiyi, yixi : i ∈ [1, 3]} ∪ {x1y2, x2y1, x1y3, y3x1, x2y3, y3x2}.
Notice that d(x1) = d(x2) = 5, d(y1) = d(y2) = 3, d(x3) = 2 and d(y3) = 6. The dominating pairs in D(6) are the following

pairs {x1, x2}, {x1, x3}, {x2, x3}, {y1, y3} and {y2, y3} ({y1, y2} is not a dominating pair). It is easy to check that D(6) is strong
and satisfies condition B1, but UG(D(6)) is not 2-connected.

Example 3. Let H(6) be a bipartite digraph with partite sets X = {x, y, z} and Y = {u, v, w}, and arc set A(H(6)) =

{xu, ux, vx, wx, yu, vy, uz, vz, zv, zw}.
Observe that xuzwx is a cycle of length 4 in H(6). The digraph H(6) is strong, d(x) = d(u) = d(v) = 4 and the dominating

pairs in H(6) are the following pairs {x, y}, {u, v}, {u, w} and {v, w}. Notice that H(6) satisfies condition B0, but contains no
perfect matching from X to Y since N+({x, y}) = {u}. In particular, H(6) is not Hamiltonian.
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Example 4. Let D be a balanced bipartite digraph of order 2a ≥ 8 with partite sets X = A∪B∪{z} and Y = C ∪{u, v}, where
the subsets A and B are non-empty, A ∩ B = ∅, z /∈ A ∪ B and u, v /∈ C . Let D satisfy the following conditions:

(i) the induced subdigraph D⟨A ∪ B ∪ C ∪ {z}⟩ is a complete bipartite digraph with partite sets A ∪ B ∪ {z} and C;
(ii) z → u and z ↔ v;
(iii) N+(u) = A, N+(v) = B ∪ {z}; and D contains no other arcs.
It is not difficult to check that D is strong, d(x) = 2a − 3 for all x ∈ A ∪ B, d(y) = 2a for all y ∈ C , d(z) = 2a − 1,

d(u) = |A| + 1 and d(v) = |B| + 2. It is easy to check that max{d(b), d(c)} ≥ 2a − 3 for every dominating pair of vertices
{b, c} (i.e, D satisfies condition B−1). Since N+(A ∪ B) = C and a − 1 = |A ∪ B| > |C | = a − 2, by Köning–Hall theorem D
contains no perfect matching from X to Y .

Example 5. Let H be the complete bipartite digraph of order 2a − 2 ≥ 6 with partite sets X = {x1, x2, . . . , xa−1} and
Y = {y1, y2, . . . , ya−1}. LetD be the digraph obtained from the digraphH by adding two new vertices x0, y0 and the following
arcs x0y0, y0x0, x0y1, y1x0.

Clearly D is strongly connected and satisfies condition B0, but UG(D) is not 2-connected.

Example 6. Let F (6) be the bipartite digraph with partite sets X = {x0, x1, x2} and Y = {y0, y1, y2}, and arc set A(F (6)) =

{xiyi, yixi : i ∈ [0, 2]} ∪ {y0x1, y1x2, x0y1, x0y2, y1x0, x1y2, y2x1}.
It is not difficult to check that F (6) is strong and satisfies condition B1, but F (6) is not Hamiltonian.

4. Preliminaries

Bypass lemma (Lemma 3.17, Bondy [11]). Let D be a strong non-separable (i.e., UG(D) is 2-connected) digraph, and let H be a
non-trivial proper subdigraph of D. Then D contains a H-bypass.

Remark. One can prove Bypass Lemma using the proof of Theorem 5.4.2 [7].

Now we will prove a series of lemmas.

Lemma 4.1. Let D be a strong balanced bipartite digraph of order 2a ≥ 8with partite sets X and Y . If D satisfies condition B1, then
the following statements hold:

(i) the underlying undirected graph UG(D) is 2-connected;
(ii) if C is a cycle of length m, 2 ≤ m ≤ 2a − 2, then D contains a C-bypass.

Proof of Lemma 4.1. (i) Suppose, on the contrary, that D is strong and satisfies condition B1 but UG(D) is not 2-connected.
Then V (D) = E ∪ F ∪ {u}, where E and F are non-empty subsets, E ∩ F = ∅, u /∈ E ∪ F and there is no arc between E and
F . Since D is strong, it follows that there are vertices x ∈ E and y ∈ F such that {x, y} → u, i.e., {x, y} is a dominating pair.
By condition B1, max{d(x), d(y)} ≥ 2a − 1. Without loss of generality, we assume that x, y ∈ X and d(x) ≥ 2a − 1. Then
u ∈ Y . From d(x) ≥ 2a − 1 and A(E, F ) = ∅ it follows that |E ∩ Y | = a − 1, i.e., Y ∩ F = ∅. Since a ≥ 4, there exist two
distinct vertices in Y ∩E, say y1, y2, such that {y1, y2} → x, i.e., {y1, y2} is a dominating pair. Since d(y, {y1, y2}) = 0, we have
max{d(y1), d(y2)} ≤ 2a − 2, which contradicts condition B1. This proves that UG(D) is 2-connected.

(ii) The second claim of the lemma is an immediate consequence of the first claim and Bypass Lemma. Lemma 4.1 is
proved. □

The digraph D(6) (Example 2) shows that the bound on order of D in Lemma 4.1 is sharp.
The digraph of Example 5 shows that for any a ≥ 4, if in Lemma 4.1 we replace condition B1 with B0, then the lemma is

not true.
Using arguments similar to those of Lemma 4.1, we can easily prove the following lemma:

Lemma 4.2. Let D be a strong balanced bipartite digraph of order 2a ≥ 4, with partite sets X and Y . If d(x) + d(y) ≥ 2a + 3 for
every dominating pair of vertices {x, y}, then

(i) the underlying undirected graph UG(D) is 2-connected; and
(ii) if C is a cycle of length m, 2 ≤ m ≤ 2a − 2, then D contains a C-bypass.
Note that Lemma 4.2 is not needed for the proof of Theorem 1.10.

Lemma 4.3. Let D be a strong balanced bipartite digraph of order 2a ≥ 8with partite sets X and Y . If D satisfies condition B0, then
D contains a perfect matching from X to Y and a perfect matching from Y to X. Moreover, D contains a cycle factor.

Proof of Lemma 4.3. Let D be a digraph satisfying the conditions of the lemma. By the well-known Köning–Hall theorem
(see, e.g., [9]) to show that D contains a perfect matching from X to Y , it suffices to show that |N+(S)| ≥ |S| for every set
S ⊆ X . Let S ⊆ X . If |S| = 1 or |S| = a, then |N+(S)| ≥ |S| since D is strong. Assume that 2 ≤ |S| ≤ a − 1. We claim that
|N+(S)| ≥ |S|. Suppose, that this is not the case, i.e., there exists S such that |N+(S)| ≤ |S|−1 ≤ a−2. From this and strongly
connectedness of D it follows that there are two vertices x, y ∈ S and a vertex z ∈ N+(S) such that {x, y} → z, i.e., {x, y} is a
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dominating pair. Hence, by condition B0,max{d(x), d(y)} ≥ 2a−2. Without loss of generality, we assume that d(x) ≥ 2a−2.
It is easy to see that

2a − 2 ≤ d(x) ≤ 2|N+(S)| + a − |N+(S)| = a + |N+(S)|.

Therefore, |N+(S)| ≥ a − 2. Thus, |N+(S)| = a − 2 and |S| = a − 1 since |N+(S)| ≤ a − 2. Now it is easy to see that
d(x) = 2a − 2, and hence, {u, v} → x, where {u, v} = Y \ N+(S). By condition B0,max{d(u), d(v)} ≥ 2a − 2. Without loss of
generality, we assume that d(u) ≥ 2a − 2. On the other hand,

2a − 2 ≤ d(u) ≤ |S| + 2(a − |S|) = 2a − |S|,

which implies that |S| ≤ 2. Therefore, a ≤ 3 since |S| = a − 1 ≤ 2. This contradicts that a ≥ 4.
Thus, for any S ⊆ X we have shown that |N+(S)| ≥ |S|. By the Köning–Hall theorem there exists a perfect matching from

X to Y . The proof for a perfect matching in the opposite direction is analogous. Ore in [25] (Section 8.6) has shown that a
balanced bipartite digraph D with partite sets X and Y has a cycle factor if and only if D contains a perfect matching from X
to Y and a perfect matching from Y to X . Therefore, D contains a cycle factor. Lemma 4.3 is proved. □

The digraph H(6) (Example 3) shows that the bound on order of D is sharp in Lemma 4.3.
The digraph D of Example 4 shows that if in Lemma 4.3 we replace condition B0 with condition B−1, then the lemma is

not true.

Lemma 4.4. Let D be a strong balanced bipartite digraph of order 2a ≥ 8 with partite sets X and Y . Suppose that D is not a
directed cycle and satisfies condition B0, i.e., max{d(x), d(y)} ≥ 2a−2 for every dominating pair of vertices {x, y}. Then D contains
a non-Hamiltonian cycle of length at least four.

Proof of Lemma 4.4. Let D be a digraph satisfying the conditions of the lemma. If D is Hamiltonian, then it is not difficult to
show that D contains a non-Hamiltonian cycle of length at least 4. So we suppose, from now on, that D is not Hamiltonian
and contains no cycle of length at least 4. By Lemma 4.3, D contains a cycle factor. Let C1, C2, . . . , Ct be aminimal cycle factor
of D (i.e., t is as small as possible). Then the length of every Ci is equal to two and t = a. Let Ci = xiyixi, where xi ∈ X and
yi ∈ Y . SinceD is strong and is not a directed cycle, there exists a vertex such that its in-degree at least two, whichmeans that
there exists a dominating pair of vertices, say u and v. By condition B0,max{d(u), d(v)} ≥ 2a− 2. Without loss of generality,
we assume that u, v ∈ X , u = x1 and

d(x1) ≥ 2a − 2. (1)

Since a ≥ 4 and (1), there exists a vertex in Y \ {y1}, say y2, such that x1 ↔ y2. It is easy to see that y1 and x2 are not adjacent,
for otherwise D would contain a cycle of length 4. We have that {y1, y2} → x1, i.e., {y1, y2} is a dominating pair. Therefore,
by condition B0,

max{d(y1), d(y2)} ≥ 2a − 2. (2)

If d(y1) ≥ 2a−2, then y1 and every vertex xi other than x2 forma2-cycle, since y1 and x2 are non-adjacent. This implies that
D contains a 4-cycle, since x1 is adjacent to every vertex of Y ,maybe except one.Wemay therefore assume that d(y1) ≤ 2a−3.
Then, by (2), d(y2) ≥ 2a − 2. Consider the following two possible cases.

Case 1. The vertex y2 and some vertex in X \ {x1, x2}, say x3, form a 2-cycle, i.e., y2 ↔ x3.
Then it is not difficult to see thatmax{d(x3), d(x2)} ≥ 2a − 2 since {x2, x3} is a dominating pair. Since D contains no cycle

of length 4, it is not difficult to check that

d(x1, {y3}) = d(x2, {y1, y3}) = d(x3, {y1}) = 0.

These imply that d(x2) ≤ 2a − 4, d(x3) ≥ 2a − 2, x3 ↔ y4, and x1 ↔ y4 because of d(x1) ≥ 2a − 2. Therefore, x1y4x3y2x1 is a
cycle of length 4, which contradicts our supposition that D contains no cycle of length at least 4.

Case 2. d(y2, {xi}) ≤ 1 for all xi /∈ {x1, x2}.
In this case from d(y2) ≥ 2a − 2 it follows that a = 4 and d(y2, {xi}) = 1 if i ∈ {3, 4}.
First consider the case d+(y2, {x3, x4}) ≥ 1.Without loss of generality,wemay assume that y2 ↦→ x3. Using the supposition

that D contains no cycle of length at least 4, it is not difficult to show that d+(y3, {x1, x2}) = 0, x3y1 /∈ A(D). Therefore,

A({x3, y3} → {x1, y1, x2, y2}) = ∅. (3)

If y2 → x4, by an argument similar to that in the proof of (3), we obtain that A({x4, y4} → {x1, y1, x2, y2}) = ∅, which together
with (3) contradicts that D is strong. We may therefore assume that y2x4 /∈ A(D). Then x4 ↦→ y2, since d(y2, {x4}) = 1. From
d(x2, {y1}) = d−(x2, {y3}) = 0, we have that d(x2) ≤ 2a − 3. From this, {x2, x4} → y2 and condition B0 it follows that
d(x4) ≥ 2a − 2. On the other hand, using the supposition that D contains no cycle of length at least 4, it is easy to check that
d−(x4, {y1, y3}) = 0. This together with d(x4, {y2}) = 1 gives d(x4) ≤ 2a − 3, which is a contradiction.

Now consider the case d+(y2, {x3, x4}) = 0. Then {x3, x4} ↦→ y2 because of d(y2, {x3}) = d(y2, {x4}) = 1. Since D contains
no cycle of length at least 4, it is easy to check that A({x1, x2} → {y3, y4}) = ∅ and d+(y1, {x3, x4}) = 0. In consequence, we
have A({x1, y1, x2, y2} → {x3, y3, x4, y4}) = ∅, which contradicts that D is strong. Lemma 4.4 is proved. □
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Let C∗

6 (respectively, P∗) be the digraph obtained from the undirected cycle of length 6 (respectively, from undirected
path of length 5) by replacing every edge xy with the pair xy, yx of arcs.

Observe that the digraph C∗

6 (and P∗) satisfies the conditions of Lemma 4.4, but has no cycle of length 4.

5. Proof of the main result

Proof of Theorem1.10. LetD be a digraph satisfying the conditions of the theorem. For a proof by contradiction, suppose that
D is not Hamiltonian. In particular,D is not isomorphic to the directed cycle of length 2a. Let C := x0y0x1y1 . . . xm−1ym−1x0 be
a longest cycle in D, where xi ∈ X and yi ∈ Y for all i ∈ [0,m−1] (all subscripts of xi and yi are takenmodulom, i.e., xm+i = xi
and ym+i = yi for all i ∈ [0,m − 1]). By Lemma 4.4, D contains a cycle of length at least 4, i.e., m ≥ 2. By Lemma 4.1(ii), D
has a C-bypass. Let P := xu1u2 . . . usy be a C-bypass (s ≥ 1). The length of the path C[x, y] is the gap of P with respect to
C . Suppose also that the gap of P is minimum among the gaps of all C-bypass. Since C is a longest cycle in D, the length of
C[x, y] is greater than or equal to s + 1.

Firstly we prove that s = 1. Suppose, on the contrary, that is s ≥ 2. Since C is a longest cycle in D and P has the minimum
gap among the gaps of all C-bypass, the vertex y−

C (respectively, us) and every vertex of P[u1, us] (respectively, C[x+

C , y−

C ])
are not adjacent. Hence,

d(us) ≤ 2a − 2 and d(y−

C ) ≤ 2a − 2

since each of P[u1, us] and C[x+

C , y−

C ] contains at least one vertex from each partite set. On the other hand, since {us, y−

C } is a
dominating pair, by condition B1, we have

2a − 1 ≤ max{d(us), d(y−

C )} ≤ 2a − 2,

a contradiction. We have thus shown that s = 1.

Since s = 1 and D is a bipartite digraph, it follows that x and y belong to the same partite set and the length of C[x, y]
must be even. Now assume, without loss of generality, that x = x0, y = xr and v := u1. Let C ′

:= V (C[y0, yr−1]) and
R := V (D) \ V (C). We now consider the cases when r ≥ 2 and when r = 1 separately.

Case 1. r ≥ 2.
Let x be an arbitrary vertex in X ∩ R. Since C is a longest cycle in D, it is easy to see that

d+(yr−1, {x}) + d+(x, {v}) ≤ 1 and d+(v, {x}) + d+(x, {y0}) ≤ 1. (4)

Note that {v, yr−1} is a dominating pair. Observe that v and every vertex of C ′are not adjacent since C-bypass P has the
minimum gap among the gaps of all C-bypass. Therefore,

d(v) ≤ 2a − 2 and d(xi) ≤ 2a − 2, (5)

where xi is an arbitrary vertex in X ∩ C ′. Since {v, yr−1} is a dominating pair, using condition B1 and the first inequality of
(5), we obtain

d(yr−1) ≥ 2a − 1, (6)

which in turn implies that
(i) the vertex yr−1 and every vertex of X are adjacent.
In particular, (i) implies that yr−1 and x are adjacent, i.e., x → yr−1 or yr−1 → x. If x → yr−1, then d−(x, {v, y0}) = 0

because of gap minimality. Hence, d(x) ≤ 2a− 2. This together with d(xr−1) ≤ 2a− 2 (by the second inequality of (5)) gives
a contradiction since {x, xr−1} is a dominating pair. We may therefore assume that xyr−1 /∈ A(D). Then yr−1 ↦→ x. By the
arbitrariness of x, we may assume that yr−1 ↦→ X ∩ R. This together with d(yr−1) ≥ 2a − 1 (by (6)) implies that |R| = 2,
i.e., the cycle C has length equal to 2a − 2, and

(ii) the vertex yr−1 and every vertex of X ∩ V (C) form a 2-cycle. In particular, {x0, x1} → yr−1, yr−1 → {x0, x1}, and
d(x0) ≥ 2a − 1 since, by (5), d(x1) ≤ 2a − 2.

By (ii), any two distinct vertices of X ∩ V (C) form a dominating pair. Therefore, every vertex of X ∩ V (C), except for at
most one vertex, has degree at least 2a − 1. This together with the second inequality of (5) implies that r = 2 and

d(xi) ≥ 2a − 1, for all xi ∈ {x0, x1, . . . , xm−1} \ {x1}, (7)

which in turn implies that
(iii) the vertex v and every vertex xi ∈ {x0, x1, . . . , xm−1} \ {x1} are adjacent.
It is not difficult to see that

if x → y0, then d+(yj, {x1}) + d+(y0, {xj+1}) ≤ 1 for all j ∈ [2,m − 1]. (8)

Indeed, if this is not the case, then x → y0 and there exists i ∈ [2,m − 1] such that yi → x1 and y0 → xi+1. Then, since
y1 → x, we have that vx2 . . . yix1y1xy0xi+1 . . . x0v is a Hamiltonian cycle, which is a contradiction.
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Using the first inequality of (4) and xy1 /∈ A(D) (by our assumption that xyr−1 /∈ A(D)) we obtain that d+(x, {v, y1}) = 0.
Therefore, since D is strong, it follows that there is a vertex yl other than y1, such that x → yl. Notice that l ̸= 2, since P has
the minimum gap among the gaps of all C-bypass. If l ≤ m − 1 and xl → y0, then vx2 . . . xly0x1y1xyl . . . x0v is a Hamiltonian
cycle, a contradiction. Thus, we may assume that

if 3 ≤ l ≤ m − 1, then xly0 /∈ A(D). (9)

Recall that r = 2 and |R| = 2, and consider the following three possible subcases.

Subcase 1.1. v → x0.
From the minimality of the gap |C[x0, xr ]| − 1 of P and (iii) it follows that v ↦→ {x2, x3, . . . , xm−1}. This together with (7)

implies that
(iv) every vertex xi, other than x0 and x1, and every vertex yj form a 2-cycle. In particular, for all i ∈ [2,m − 1], xi ↔ y0

and yi → x2 → {y0, y1}.
Now using (9) and (iv), it is not difficult to see that

d+(x, {y1, y2, . . . , ym−1}) = 0 and x → y0, (10)

i.e., l = 0. From y1 → x → y0 and (4) it follows that v and x are not adjacent. Therefore, d(x) ≤ 2a − 2. This together with
d(x1) ≤ 2a − 2 (by (5)) and condition B1 implies that x1y0 /∈ A(D). Since {v, y0} → x2 and d(v) ≤ 2a − 2 (by (5)), from
condition B1 it follows that d(y0) ≥ 2a−1. This together with x1y0 /∈ A(D) gives y0 → x0. Combining this with (iv)we obtain
that y0 → {x2, x3, . . . , xm−1, x0}. Therefore, from (8) it follows that d−(x1, {y2, y3, . . . , ym−1}) = 0. This together with (10)
implies that d(y2) ≤ 2a − 2. Now recall that {v, y2} → x2, by (iv) (i.e., {v, y2} is a dominating pair), but d(y2) ≤ 2a − 2 and
d(v) ≤ 2a − 2, which contradicts condition B1.

Subcase 1.2. vx0 /∈ A(D) and x2 → v.
Then from the minimality of the gap |C[x0, x2]| − 1 and (iii) it follows that

{x3, x4, . . . , xm−1, x0} ↦→ v.

This together with (7) implies that
(v) every vertex xi, other than x1 and x2, and every vertex yj form a 2-cycle, where j ∈ [0,m − 1]. In particular, yj → x0,

and if i /∈ {1, 2}, then xi ↔ y0.
From (9) and (v) it follows that in this subcase (10) also is true. From x → y0 → xi, where i /∈ {1, 2}, and (8) it follows

that d−(x1, {y2, y3, . . . , ym−1}) = 0. Using this and (10), we obtain

d(yj) ≤ 2a − 2 for all j ∈ [2,m − 1]. (11)

By (v), yj → x0 for all yj. Combining this with (11) we obtain that m = 3, i.e., the cycle C has length 6, in particular, a = 4.
From d(y2) ≤ 2a − 2 (by (11)), {y0, y2} → x0 (by (v)) and condition B1 it follows that d(y0) ≥ 2a − 1. Therefore, y0 → x and
y0 ↔ x2 since x1y0 /∈ A(D). Using (ii), i.e., the fact that the vertex y1 forms a 2-cycle together with each vertex of {x0, x1, x2},
it is easy to see that x1 and y2 are not adjacent (for otherwise, if x1 → y2, then x1y2x0vx2y1xy0x1 is a Hamiltonian cycle;
if y2 → x1, then y2x1y1xy0x0vx2y2 is a Hamiltonian cycle). On the other hand, the vertices x and y2 also are not adjacent,
because of the minimality of the gap |C[x0, x2]| − 1. Therefore, d(y2, {x, x1}) = 0. Since v → x2, d(v) = 3 and d(y2) ≤ 4,
using condition B1 we obtain that y2x2 /∈ A(D). We have thus shown that a = 4, D contains exactly the following 2-cycles
and arcs: v ↔ x2, x2 ↔ y1, y1 ↔ x1, y1 ↔ x0, y2 ↔ x0, y0 ↔ x0, y0 ↔ x, y0 ↔ x2, x2y2, y1x, y0x1 and x0v.

Now it is not difficult to check that D is isomorphic to D(8). (To check this, let now X := {x0, x1, x2, x3} and Y :=

{y0, y1, y2, y3}, where x0 := x, x1 := x1, x2 := x0, x3 := x2, y0 := y0, y1 := y1, y2 := y2 and y3 := v). Subcase 1.2 is
considered.

Subcase 1.3. vx0 /∈ A(D) and x2v /∈ A(D).
Let t be the number of vertices in C[x3, xm−1] each of which together with v forms a 2-cycle (recall that v ∈ Y ). We will

consider the subcases t ≥ 1 and t = 0 separately.

Subcase 1.3.1. t ≥ 1.
Then m ≥ 4. Let xq ∈ C[x3, xm−1] be a vertex such that v and xq form a 2-cycle, i.e., v ↔ xq. From this, (iii) and the fact

that C-bypass P has the minimum gap among the gaps of all C-bypass it follows that

v ↦→ {x2, x3, . . . , xq−1} and {xq+1, xq+2, . . . , xm−1, x0} ↦→ v. (12)

Hence, t = 1. Using (7) and (12) we conclude that
(vi) every vertex xi ∈ C[x2, x0] \ {xq} and every vertex yj form a 2-cycle. In particular, for every vertex yj, yj ↔ x2,

{v, yj} → x2 (i.e., {v, yj} is a dominating pair) and xi → y0 for all xi other than x1 and xq.
From condition B1, (vi) and d(v) ≤ 2a − 2 (by (5)) it follows that

d(yj) ≥ 2a − 1 for all j ∈ [0,m − 1]. (13)

Using xi ↔ y0 (by (vi)), where xi /∈ {x1, xq}, and (9) we obtain that l = q or l = 0. Recall that x → yl.
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Let l = q, i.e., x → yq. By (9), xqy0 /∈ A(D). This together with d(xq) ≥ 2a − 1 (by (7)) implies that y0 → xq. Since
C-bypass P has the minimum gap among the gaps of all C-bypass, it follows that yq−1x /∈ A(D) (for otherwise, the C-bypass
yq−1 → x → yq has a gap equal to 2, which is a contradiction). Therefore, since d(yq−1) ≥ 2a − 1 (by (13)), yq−1 → x1. Now
it is easy to see that vx2 . . . yq−1x1y1xyq . . . x0y0xqv is a Hamiltonian cycle in D, which contradicts our initial supposition.

Let now l ̸= q. Then l = 0, i.e.,

x → y0 and d+(x, C[y1, ym−1]) = 0,

in particular, xym−1 /∈ A(D). Because of gap minimality and x → y0, we have that ym−1x /∈ A(D). Therefore, x and ym−1 are
not adjacent which in turn implies that d(ym−1) ≤ 2a − 2. This contradicts (13), when j = m − 1.

Subcase 1.3.2. t = 0, i.e., there is no xi, i ∈ [0,m − 1], such that xi ↔ v.
From (7) it follows that
(vii) every vertex xi other than x1 and every vertex yj form a 2-cycle. In particular, for every i ̸= 1 and every j ∈ [1,m−1]

we have xi ↔ y0 and yj ↔ x2.
Now using (9) and xi ↔ y0, i ̸= 1, we see that for this subcase (10) also is true. From x → y0, (vii) (i.e., y0 →

{x2, x3, . . . , xm−1, x0}) and (8) we obtain that d−(x1, {y2, y3, . . . , ym−1}) = 0. This together with the equality of (10) implies
that

d(yj) ≤ 2a − 2 for all yj /∈ {y0, y1},

in particular, d(y2) ≤ 2a − 2. From (vii) we have that y2 → x2. Hence, {v, y2} → x2 (i.e., {v, y2} is a dominating pair). Now
using (5), we see thatmax{d(v), d(y2)} ≤ 2a−2, which contradicts condition B1. This contradiction completes the discussion
of Case 1.

Case 2. r = 1.
Note that {v, y0} is a dominating pair. By condition B1,max{d(v), d(y0)} ≥ 2a − 1. Because of the symmetry between the

vertices v and y0, we can assume that d(v) ≥ 2a − 1, which implies that
(viii) the vertex v and every vertex of X are adjacent.

Subcase 2.1. In subdigraph D⟨R⟩ there exists a 2-cycle through v.
Let u ∈ X ∩ R and v ↔ u. In this subcase, since C is a longest cycle in D, it is easy to see that the following Claims 1 and 2

are true.

Claim 1. If xi → v, i ∈ [0,m − 1], then uyi /∈ A(D), and if v → xi, then yi−1u /∈ A(D).

Claim 2. If xi → v → xi+1, i ∈ [0,m − 1], then u and yi are not adjacent.

We now prove the following claim:

Claim 3. If xi ↔ v, i ∈ [0,m − 1], then (a) xi+1 ↦→ v and (b) v ↦→ xi−1 are impossible.

Proof of Claim 3. (a). Suppose, on the contrary, that for some i ∈ [0,m − 1] xi ↔ v and xi+1 ↦→ v. This and the fact that
d(v) ≥ 2a − 1 (by our assumption) imply that

v ↔ x for every x ∈ X \ {xi+1}. (14)

From (14) and Claim 2 it follows that
(ix) if v ↔ z, where z ∈ X ∩ R, then z and every vertex of (Y ∩ V (C)) \ {yi} are not adjacent. In particular, the following

hold d(z) ≤ 2a − 2 and d(yj) ≤ 2a − 2 for any yj other than yi.

If |X ∩ R| ≥ 2, then, by (14) and (ix), there are two distinct vertices in X ∩ R, say x and z, such that x ↔ v, z ↔ v and
max{d(x), d(z)} ≤ 2a − 2, which contradicts condition B1. We may therefore assume that |X ∩ R| = 1. Then the cycle C has
length 2a − 2, i.e., m = a − 1 ≥ 3. Since u ↔ v, xi+1 ↦→ v and d(u) ≤ 2a − 2 (by (ix)), from condition B1 it follows that
d(xi+1) ≥ 2a−1. This together with xi+1 ↦→ v implies that xi+1 and every vertex of Y \{v} form a 2-cycle, i.e., any two distinct
vertices of Y ∩ V (C) form a dominating pair. On the other hand, since m ≥ 3 and (ix), there exist two distinct vertices in
(Y ∩ V (C)) \ {yi}, say ys and yk, such thatmax{d(ys), d(yk)} ≤ 2a − 2, which contradicts condition B1. Claim 3(a) is proved.
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(b). Suppose, on the contrary, that for some i ∈ [0,m − 1] xi ↔ v and v ↦→ xi−1. Similar to (14), we obtain that

v ↔ x for any x ∈ X \ {xi−1}. (15)

This and Claim 2 imply
(x) every vertex x ∈ X ∩ R and every vertex of yj ∈ (Y ∩ V (C)) \ {yi−1} are not adjacent. In particular, d(x) ≤ 2a − 2 and

d(yj) ≤ 2a − 2.
If |X ∩ R| ≥ 2, then, by (15) and (x), there exist two distinct vertices in X ∩ R, say x and z, such that {x, z} → v and

max{d(x), d(z)} ≤ 2a − 2, which contradicts condition B1. Hence we may assume that |X ∩ R| = 1. Then the cycle C has
length 2a − 2, i.e., m = a − 1 ≥ 3. Since xi ↔ v and v ↔ u, from condition B1 and the first inequality of (x) (when x = u)
it follows that d(xi) ≥ 2a − 1. Therefore, xi and every vertex of Y ∩ V (C), maybe except one, form a 2-cycle. Using this and
the second inequality of (x), we obtain that m = 3, y → xi for some y ∈ (Y ∩ V (C)) \ {yi−1} and d(yi−1) ≥ 2a − 1. Since
yi−1u /∈ A(D), it follows that u → yi−1. Thuswe have, {xi−1, u} → yi−1 (i.e., {xi−1, u} is a dominating pair) and d(xi−1) ≥ 2a−1
because of d(u) ≤ 2a − 2 by the first inequality of (x). Then d(xi−1) ≥ 2a − 1 and v ↦→ xi−1 imply that xi−1 and every vertex
of Y ∩ V (C) form a 2-cycle. Since m = 3, there exist two distinct vertices in (Y ∩ V (C)) \ {yi−1}, say ys and yk, such that
{ys, yk} → xi−1. Because of the second inequality of (x), we havemax{d(ys), d(yk)} ≤ 2a− 2, which contradicts condition B1.
Claim 3 is proved. □

Now we can finish the proof of Theorem 1.10 in Subcase 2.1.
By Claim 3 and d(v) ≥ 2a − 1 (by our assumption), the vertex v and every vertex of X ∩ V (C) form a 2-cycle. Therefore,

by Claim 2, the vertex u and every vertex of V (C) are not adjacent, which in turn implies that

d(u) ≤ 2a − 2 and d(yj) ≤ 2a − 2 for all j ∈ [0,m − 1]. (16)

Using the facts that {xi, u} → v, d(u) ≤ 2a−2 and condition B1, we obtain that d(xi) ≥ 2a−1 for all xi. Since d(yj) ≤ 2a−2 for
all yj, using condition B1 we conclude that no two distinct vertices of {y0, y1, . . . , ym−1} form a dominating pair. In particular,
yixi /∈ A(D) for all yi. This and the fact that d(xi) ≥ 2a − 1 imply that xi and every vertex of Y \ {yi} form a 2-cycle.

From this and (16) it follows that if m ≥ 3, then {y0, y2} → x1, but max{d(y0), d(y2)} ≤ 2a − 2, which is a contradiction.
Wemay therefore assume thatm = 2. Then |R| ≥ 4 and there is a vertex y ∈ (Y ∩R)\ {v} such that x0 ↔ y since y0x0 /∈ A(D)
and d(x0) ≥ 2a − 1. Therefore, {y1, y} → x0, i.e., {y1, y} is a dominating pair. Since d(y1) ≤ 2a − 2 (by (16)), condition B1
implies that d(y) ≥ 2a − 1. Therefore, y → u or u → y. Now using the facts that x0 ↔ y, x0 ↔ v and x1 ↔ v, it is not
difficult to show that (in both cases) D contains a cycle of length 2m + 2 = 6, which contradicts that C is a longest cycle in
D. The discussion of Subcase 2.1 is completed.

Subcase 2.2. In subdigraph D⟨R⟩ there is no 2-cycle through the vertices v.
In this subcase from d(v) ≥ 2a − 1 it follows that |R| = 2, u ↦→ v or v ↦→ u, where {u} = X ∩ R, and the vertex v and

every vertex of X \ {u} form a 2-cycle. Since D is strong, it follows that if u ↦→ v (respectively, v ↦→ u), then there exists
a vertex yi such that yi → u (respectively, u → yi) and hence, yiuvxi+1 . . . xiyi (respectively, xivuyi . . . xi) is a Hamiltonian
cycle, a contradiction. This contradiction completes the proof of the theorem. □

Theorem 1.10 is best possible in the following sense:
The digraph F (6) (Example 6) and its converse digraph show that the bound on order of D in Theorem 1.10 is sharp.
The digraph D of Example 5 shows that if in Theorem 1.10 we replace condition B1 with condition B0, then the theorem

is not true.

Corollary 5.1 (Wang [27]). Let D be a strongly connected balanced bipartite digraph of order 2a, where a ≥ 4. Suppose that, for
every dominating pair of vertices {x, y}, either d(x) ≥ 2a − 1 and d(y) ≥ a + 1 or d(y) ≥ 2a − 1 and d(x) ≥ a + 1. Then D is
Hamiltonian.

6. Concluding remarks

A balanced bipartite digraph of order 2a is even pancyclic if it contains cycles of every length 2k, 2 ≤ k ≤ a. Bondy
suggested (see [13] by Chvátal) the following metaconjecture:

Metaconjecture. Almost any non-trivial condition of a graph (digraph) which implies that the graph (as digraph) is Hamiltonian
also implies that the graph (digraph) is pancyclic. (There may be a ‘‘simple’’ family of exceptional graphs (digraphs)).

There are various sufficient conditions for a digraph (undirected graph) to be Hamiltonian are also sufficient for the
digraph (undirected graph) to be pancyclic. Motivated by these, it is natural to set the following problem:

Problem. Characterize those balanced bipartite digraphs which satisfy condition B1 or the condition of Theorem 1.9 but are
not even pancyclic.
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We have shown the following theorem.

Theorem 6.1 (Darbinyan [15]). Let D be a strongly connected balanced bipartite digraph of order 2a ≥ 8 other than a directed
cycle of length 2a. If max{d(x), d(y)} ≥ 2a − 1 for every dominating pair of vertices {x, y}, then either D is even pancyclic or D is
isomorphic to the digraph D(8) (for the definition of D(8), see Example 1).

Using Theorem 1.9, recently Adamus [2] proved that:

Theorem 6.2 (Adamus [2]). Let D be a strongly connected balanced bipartite digraph of order 2a ≥ 6. Suppose that D is not a
directed cycle and d(x)+ d(y) ≥ 3a for every pair of vertices x, y with a common in-neighbour or a common out-neighbour. Then
D is even pancyclic.
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