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Justification of the research problem
The problem of quintessence, as the basis of everything, is the most

discussed idea of all times, from the ancient to the present times. History
of this problem very long from Aristotle and Plato to Ratra and Peebles
(1988) and Steinhardt et al. (1999).

In cosmology, quintessence is a hypothetical form of dark energy or
scalar field, postulated as an explanation of observation, namely, the
expansion of the universe with acceleration.

Since quintessence – dark energy or, more precisely, a scalar field,
determines main properties of observed matter in universe its accurate
quantitative investigation is an important problem of modern theoretical
and mathematical physics.

It is well known that perturbation theory for QFT is destroyed at low
energies, and field operators can have nonzero values of vacuum expect-
ation, called condensates.

In this regard, the mathematical problem consists in rigorous proof of
the existence of a scalar field.

A. S. Gevorkyan, Quantum Vacuum: The Structure of Empty Space
–Time and Quintessence with Gauge Symmetry Group SU(2)⊗ U(1),
Particles 2019, 2, 281–308; doi:10.3390/particles2020019



Energy-mass distribution in the universe today



Standard model for free vacuum fields

The Yang-Mills theory is a special example of gauge field theory
with a non-Abelian gauge symmetry group, whose Lagrangian for
the case of free vacuum fields (VF) has the following form:

Lgf = −1

2
Tr(F2) = −1

4
Fµν
a Fa

µν , (1)

where F is the 2-form of the Yang-Mills field strength, which is
represented by the tensor potential Aa

µ as follows:

Fa
µν = ∂µAa

ν − ∂νAa
µ + gfabcAb

µAc
ν , µ, ν = 0, 1, 2, 3. (2)

Note that ∂µ = (ic−1
0 ∂t , ∂x , ∂y , ∂z) = (ic−1

0 ∂t ,∇) denotes the
covariant derivative in the four-dimensional Minkowski space-time,
which in Galilean coordinates is reduced to the usual partial deriva-
tive. In addition, fabc = fabc are called structural constants of the
group (Lie algebra), g is the self-action constant and for the group
SU(N), the number of isospins generators varies a, b, c = [1,N2 − 1].



Yang-Mills equations and its extension

From the Lagrangian (1) one can derive the equations of motion
for the classical free Yang-Mills fields:

∂µFa
µν + gfabcAµbFc

µν = 0, (3)

where the second term characterizing self-action plays a key role in
the representation. In the case of a small coupling constants g < 1,
the perturbation theory is applicable for solving these equations.
However, as shown by numerous studies, in this case, massless
vector bosons with spin 1 are not formed. For the case of g > 1,
there is no idea how to solve these equations?

Recall that this is one of the millennium problem by classification
of the Clay Mathematics Institute.

Our proposal is as follows: V since in QV at small scales of
space-time, continuous random multi-scale fluctuations are
observed, the system (3) should be considered as a system of
SDE for complex probabilistic processes Fa

µν .



Equation of vector fields

We consider the case, when space-time is described by the Lorentz
metric χµν = diag(+ − −−), the self-action constant g = 0 and,
the fields satisfy the symmetry group SU(2)⊗ U(1). In this case,
obviously, there are three isospins a = 1, 2, 3. The latter means
that we consider the unified electroweak interaction within the
Abelian gauge group, but using stochastic field equations.

We determine the covariant antisymmetric tensor of the quantum
vacuum fields (QVF) in the form:

Fa
µν =


0 ψ±

x ψ±
y ψ±

z

ψ±
x 0 ±ψ±

z ∓ψ±
y

ψ±
y ∓ψ±

z 0 ∓ψ±
x

ψ±
z ±ψ±

y ∓ψ±
x 0

 , (4)

where ψ±
σ denotes the component of the wave function.

Substituting (4) into (3), we can obtain the following vector
equation, which we will call the Langevin-Weyl equation:



⇓

ψ̇±(r, t; f(t))∓ c
(
S ·∇

)
ψ±(

r, t; f(t)
)
= 0, χ̇ = ∂tχ, (5)

where S = (Sx , Sy , Sz) denotes the set of matrix:

Sx =

 0 0 0
0 0 −i
0 i 0

 , Sy =

 0 0 i
0 0 0
−i 0 0

 , Sz =

 0 −i 0
i 0 0
0 0 0

 .

In addition, f(t) is a random function characterizing QV fluctuations, c is
VF propagation speed, which can be different from the speed of light c0,
the symbol ψ±(r, t; f(t)) denotes a complex probabilistic process, which
can be represented as a three-component vector in the Hilbert space:

ψ±(r, t; f(t)) =

 ψ±
x (r, t; f(t))

ψ±
y (r, t; f(t))

ψ±
z (r, t; f(t))

 . (6)

In the case when f≡ 0 the equation (5) passes to the well-known
Weyl-type equation for light, taking into account the spin of light.



Quantization of stochastic vacuum fields

Multiscale random-fluctuations of VF can be described by relaxation
times {τ} = (τ0, τ1, ..) and fluctuations powers {ε} = (ε0, ε1, ...).

Theorem. If QVF obeys the Langevin–Weyl SDE (5), then for the
symmetry group SU(2)⊗ U(1) on the main relaxation scale (τ0, ε

a
0), in

the limit of statistical equilibrium, a massless Bose particle with spin 1 is
formed as 2D topological structure in 3D space.

Obviously, in a localized quantum state, the four-dimensional interval of
the propagated signal s should be zero:

s2 = c2t2 − r2 = 0, r2 = x2 + y2 + z2. (7)

Using the equations (7), it is easy to calculate the following derivatives:

c,t = −c2

r
, c,x =

cx

r2
, c,y =

cy

r2
, c,z =

cz

r2
, (8)

where c,σ = ∂σc .



Second-order equations for quantum vacuum fields
Taking into account (5), (6) and (8), we obtain the following
second-order PDF for QVF:

�ψ+
x =

c,y
c

(
∂xψ

+
y − ∂yψ

+
x

)
− c,z

c

(
∂zψ

+
x − ∂xψ

+
z

)
− c,t

c3
ψ̇+
x ,

�ψ+
y =

c,z
c

(
∂yψ

+
z − ∂zψ

+
y

)
− c,x

c

(
∂xψ

+
y − ∂yψ

+
x

)
− c,t

c3
ψ̇y ,

�ψ+
z =

c,x
c

(
∂zψ

+
x − ∂xψ

+
z

)
− c,y

c

(
∂yψ

+
z − ∂zψ

+
y

)
− c,t

c3
ψ̇z . (9)

The following additional conditions are imposed on the com-
ponents of the derived fields:(

c,z − c,y
)
ψ̇x = c,z ψ̇

+
y − c,y ψ̇

+
z ,(

c,x − c,z
)
ψ̇y = c,x ψ̇

+
z − c,z ψ̇

+
x ,(

c,y − c,x
)
ψ̇z = c,y ψ̇

+
x − c,x ψ̇

+
y . (10)

Note that this allows us to write the system of equations in a
canonical form, which looks quite natural.



The canonical form of fields equations

Using the conditions (10), the system of equations (9) can be
easily leaded to the canonical form:{

�+
[
i(c,z − c,y ) + c,tc

−1
]
c−2∂t

}
ψ+
x = 0,{

�+
[
i(c,x − c,z) + c,tc

−1
]
c−2∂t

}
ψ+
y = 0,{

�+
[
i(c,y − c,x) + c,tc

−1
]
c−2∂t

}
ψ+
z = 0. (11)

For further investigations, it is convenient to represent the wave
function component in the form:

ψ+
σ

(
r, t; fσ(t)

)
= exp

{∫ t

−∞
ζσ(t

′)dt ′
}
ϕ+σ (r), (12)

where ζσ(t) denotes the random function, and fσ(t) is the
corresponding projection of a random vector force f(t).



⇓

Substituting (12) into (11) and taking into account (8), we get the
following system of differential equations:{

△−
[(ξx(t)

c

)2
+

r − i(z − y)

cr2
ζx(t)

]}
ϕ+x (r) = 0,{

△−
[(ξy (t)

c

)2
+

r − i(x − z)

cr2
ζy (t)

]}
ϕ+y (r) = 0,{

△−
[(ξz(t)

c

)2
+

r − i(y − x)

cr2
ζz(t)

]}
ϕ+z (r) = 0, (13)

where the following designations are made:

ξ2σ(t) = ζ̇σ(t) + ζ2σ(t), ζ̇σ = ∂tζσ, σ = x , y , z .

Averaging the equations (13) on the main relaxation time scale τ0,
we obtain the following system of stationary differential equations:



Equations of vector fields after relaxation

{
△−

[(ωx

c

)2

+
r − i(z − y)

cr2
ϱ(ωx)

]}
ϕ+x (r) = 0,{

△−
[(ωy

c

)2

+
r − i(x − z)

cr2
ϱ(ωy )

]}
ϕ+y (r) = 0,{

△−
[(ωz

c

)2

+
r − i(y − x)

cr2
ϱ(ωz)

]}
ϕ+z (r) = 0, (14)

where ωσ and ϱ(ωσ) are regular parameters of the problem, which are
defined as follows:

ω2
σ = ⟨ξ2σ(t)⟩ = ⟨ζ̇σ(t) + ζ2σ(t)⟩, ϱ(ωσ) = ⟨ζσ(t)⟩. (15)

In the (15) the bracket ⟨...⟩ denotes the averaging by τ0.

Now the main question to which we must answer the following: is it
possible the emergence of statistical equilibrium in the system under
consideration, which can lead to the stable distribution of the parameter
ϱ(ωσ)?



Distribution density of excitations’ mod

Using the first relation in (15), we can get the following Langevin type
equation:

ζ̇σ = −(ζ2σ − ω2
σ) + Uσ(t), Uσ(t) = U0σ + fσ(t), (16)

where U0σ = ⟨Uσ(t)⟩ < 0 is an unknown constant. As for function fσ(t),
it denotes a random force that satisfies the white noise conditions:

⟨fσ(t)⟩ = 0, ⟨fσ(t)fσ(t ′)⟩ = εa0σδ(t − t ′). (17)

Note that the set of constants εa0 = (εa0x , ε
a
0y , ε

a
0z) denote fluctuations

powers of isospin a along different axes. It is natural to assume that each
isospin consists from terms εa0 = (εa0x , ε

a
0y , ε

a
0z), in addition, εa0 ̸= εb0 .

Note that in SU(2)× U(1) gauge group there are three W bosons of
weak isospin from SU(2), namely (W1,W2 and W3, and the B boson of
weak hypercharge from U(1), respectively, all of which are massless.
These bosons obviously determined by a set of constants ε0 = (ε10, ε

2
0, ε

3
0).



⇓
Using SDE (16) and relations (17), as well as assuming that
U0σ = −2ω2

σ, one can obtain the equation for the distribution:

∂P0

∂t
=

{
∂

∂ζ

(
ζ2 + ω2

)
+
ε0
2

∂2

∂ζ2

}
P0. (18)

Recall that in (18) and below, to simplify writing, we will omit
both the isospin index a and the coordinate index σ. Solving the
equation (18):

P0(ζ̄; ω̄) = 2ε−1
0 J (ω̄)e−2Φ(ζ̄)

∫ ζ̄

−∞
e2Φ(ζ̄′)d ζ̄ ′, (19)

where ζ̄ = ζ/ε
1/3
0 and Φ(ζ̄) = (ζ̄3 + 3ω̄2ζ̄)/3, in addition, from the

condition for normalizing the distribution (19) to unity:

J −1(ω̄) =
√
π

(
2

ε0

)1/3 ∫ ∞

0
exp

[
−x3

6
− 2 ω̄2x

] dx√
x
,

where ω̄ = ω/ε
1/3
0 is the dimensionless frequency.



The wave function of a massless particle with spin 1
Since the equations in the system (14) are independent, we can
investigate them separately. For definiteness, consider the first
equation of the system (14), which describes x component of
QVF. Representing the wave function in the form:

ϕ+x (r) = ϕ
+(r)
x (r) + iϕ

+(i)
x (r), (20)

from the first equation of (14), we can get two equations:{
△−

[(ω
c

)2
+
λ

r

]}
ϕ
+(r)
x (r)− λ

z − y

r2
ϕ
+(i)
x (r) = 0,{

△−
[(ω

c

)2
+
λ

r

]}
ϕ
+(i)
x (r) + λ

z − y

r2
ϕ
+(r)
x (r) = 0, (21)

where the parameter:

λ = −ϱ(ω̄)/c < 0. (22)



⇓

It is easy to show that the equations (21) are invariant with respect to
permutations:

ϕ+(r)
x (r) 7→ ϕ+(i)

x (r), ϕ+(i)
x (r) 7→ −ϕ+(r)

x (r).

Using this symmetry from (21) we can get two independent equations of
the form:{

△+
[
−
(ω
c

)2

+ |λ| r − (y − z)

r2

]}
ϕ+(r)
x (r) = 0,{

△+
[
−
(ω
c

)2

+ |λ| r + (y − z)

r2

]}
ϕ+(i)
x (r) = 0. (23)

Recall that the real term of the wave function ϕ
+(r)
x (r) describes the

electrical field, while the imaginary term ϕ
+(i)
x (r) corresponds to the

magnetic field. Now the main question is that: do these equations have
quantized solutions that can be interpreted as the solution of localized
particles.



Quantization conditions
Consider the solution ϕ

+(r)
x (r) on the plane:

r − y + z = µr , (24)

where parameter µ varies within µ ∈ [1−
√
2, 1 +

√
2]. Given (24),

the first equation in (23) can be written as:{
△+

[
−
(ω
c

)2
+

|λ|µ
r

]}
ϕ
+(r)
x (r) = 0. (25)

Representing the wave function in the form:

ϕ
+(r)
x (r) = Λ(r)Y (θ, φ), r = |r|, (26)

where Y (θ, φ) denotes spherical function, for the function Λ(r)
with the given parameter µ > 0 we get the following equation for a
hydrogen-like atom:

d2Λ

dρ2
+

2

ρ

dΛ

dρ
+

[
−β2 + 2

ρ
− l(l + 1)

ρ2

]
Λ = 0, ρ = r/ap, (27)

where ap = 2/(|λ|µ0) denotes the particle size and l = 0, 1, ....



⇓
Note that the equation (27) has discrete solutions:

Λnl(r) =
(b)3/2(br)le−br/2√
2n(n − l − 1)!(n + l)!

L2l+1
n−l−1(br), b =

2

nap
, (28)

(L2l+1
n−l−1(br) are associated Laguerre polynomials) if the following

condition holds:

nr + l + 1 = n + l = β−1, nr = 0, 1, 2..., (29)

where nr is the radial quantum number, n is the principal quantum
number and l- quantum number of angular momentum. In other
words, the quantization condition is the integer value of the term
β−1, which implies satisfying the following conditions:[

β−1
]
=

[ ϱ̆(ω̄)
ω̄

]
= n,

{
β−1

}
=

{ ϱ̆(ω̄)
ω̄

}
= 0, (30)

where ϱ̆(ω̄) = ε
1/3
0 ϱ(ω̄) - dimensionless function, [...] and {...}

brackets denote the integer and fractional parts of the function,
respectively.



A set of values ω̄ for which the system is quantized
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Obrázek: The dependence of a quantity β−1(ω̄) on the dimensionless
frequency ω̄. It is easy to see that the red dots satisfy the quantization
conditions (29) - (30), while the blue dots do not satisfy these conditions.



The manifold on which hion (bose particle) is localized

Obrázek: Boson of a vector field (hion) with projection of spin +1 is a
2D structure consisting of six components localized on the manifold
consisting of planes ϕ+x [(−Y ,Z ) ∪ (Y ,−Z )], ϕ+y [(−X ,Z ) ∪ (X ,−Z )]
and ϕ+z [(−X ,Y ) ∪ (X ,−Y )], respectively.



Ground state of hion radial wave function
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Obrázek: The probability distribution of hion in the ground state
depending on the radius. The distance ρ0 = 1/2, or more precisely
ϱ0 = ap/2, at which the maximum value of the amplitude of the hion
probability is reached.



The first few excited radial wave functions of hion
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Obrázek: The probability distributions of the first four excited states of
the hion depending on radius. The orange curve in the graph shows the
probability distributions in various three excited states.



Conclusion

1. Main result of this study is justification of new paradigm
and extension Standard Model.

2. A new approach allows to rigorous proof of possibility
formation massless bose particles (hions) with spin 1 for
the gauge group symmetry SU(2)⊗ U(1).

3. It is shown that, when two hions with opposite spins are
entangled up, bosons with 0 spins can be formed. Further,
these 0-spin particles by way of condensation form a scalar
field- dark energy-quintessence.

4. These researches opens up new possibilities for implemen-
tation real space-time engineering.

Details are available. A. S. Gevorkyan, Quantum Vacuum: The Structure of 
Empty Space–Time and Quintessence with Gauge Symmetry Group
SU(2) ⊗ U(1), Particles 2019, 2, 281–308; doi:10.3390/particles2020019
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