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Characterization of hyperidentities defined
by the equality ((x, y), u, v) = (x, (y, u), v)

L.R. Abrahamyan

Artsakh State University, Stepanakert
E-mail: liana abrahamyan@mail.ru

The following universal formula from a second-order language with
specialized quantifiers have been studied in various domains of algebra
and its applications and they were called hyperidentity:

∀X1, . . . , Xm∀x1, . . . , xn(W1 = W2), (1)

where w1, w2 are terms (words) in the functional variables X1, ..., Xm

and in the object variables x1, ..., xn. For simplicity the hyperidentity is
written without a quantifier prefix, i.e. as an equality: w1 = w2. The
number m is called functional rank and the number n is called object
rank of the given hyperidentity. A hyperidentity is true (or satisfied) in
an algebra (Q;U) if the equality w1 = w2 is valid when every object
variable and every functional variable in it is respectively replaced by any
arbitrary element of Q and any operation of the corresponding arity from
U (it is assumed that such replacement is possible).

An algebra with binary and ternary operations is called {2,3}-algebra.
A {2,3}-algebra (Q;U) is called:

a) functionally non-trivial if the sets of its binary and ternary opera-
tions are non-singleton;

b) 2q-algebra if there exists a binary quasigroup operation in U ;
c) 3q-algebra if there exists a ternary quasigroup operation in U ;
d) invertible algebra if its every operation is a quasigroup operation.

Theorem 1. If in the functionally non-trivial invertible {2,3}-algebra the
hyperidentity, which is defined by the equality:

((x, y), u, v) = (x, (y, u), v),

is satisfied, then every functional variable is repeated in it, at least, twice.
Therefore, such hyperidentity can only be of functional rank 2 and it has
the following form:

Y (X(x, y), u, v)) = Y (x,X(y, u), v).
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Theorem 2. If in the functionally non-trivial invertible 2q-algebra the
hyperidentity, which is defined by the equality:

((x, y), u, v) = (x, (y, u), v),

is satisfied then every ternary functional variable is repeated in it, at least,
twice. Therefore, such hyperidentity can only be of functional rank 2 or 3
and it has one of the following forms:

Y (X(x, y), u, v)) = Z(x,X(y, u), v),

Y (X(x, y), u, v)) = Y (x,X(y, u), v).

References
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ceedings of IV All-Union Mathematical Congress, Leningrad, 1, Pub-
lishing House of the USSR Academy of Sciences, Leningrad, 169–198,
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[5] Yu.M. Movsisyan. Hyperidentities in algebras and varieties. Uspekhi
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Orientation-dependent events in geometric
probabilities

N.G. Aharonyan

Yerevan State University
E-mail: narine78@ysu.am

Let Rn (n ≥ 2) be the n-dimensional Euclidean space, D ⊂ Rn be a
bounded convex body with inner points, and Vn be the n-dimensional
Lebesgue measure in Rn. The function

C(D, h) = Vn(D ∩ (D + h)), h ∈ Rn,

is called the covariogram of D. Here D + h = {x+ h, x ∈ D}.
Let Sn−1 denote the (n − 1)-dimensional sphere of radius 1 centered at
the origin in Rn and Πru⊥D be the orthogonal projection of D onto the
hyperplane u⊥ (here u⊥ stands for the hyperplane with normal u, passing
through the origin). Let L(u, ω) be a random segment of length l > 0,
which is parallel to a given fixed direction u ∈ Sn−1 and intersects D.
Denote by P(L(u, ω) ⊂ D) probability, that random segment L(u, ω) (of
fixed length l and direction u) entirely lying in body D.

Proposition 1. Probability P(L(u, ω) ⊂ D) in terms of covariogram of
body D has the form:

P(L(u, ω) ⊂ D) =
C(D,u, l)

Vn(D) + l bD(u)
,

where bD(u) = Vn−1(Πru⊥D). In particular, for the case of n-dimensional
ball we obtain

P(L(u, ω) ⊂ Bn(R)) =
2R(

R
√
πΓ((n+1)/2)
Γ(n/2+1) + l

) ∫ φ

0

sinn θ dθ.

Obviously, we have P(L(ω) ⊂ Bn(R)) = 1 for l = 0 and P(L(ω) ⊂
Bn(R)) = 0 for l ≥ 2R.

References

[1] H. S. Harutyunyan, V. K. Ohanyan. Orientation-dependent section
distributions for convex bodies. Journal of Contemporary Mathemat-
ical Analysis, 49(3):139–156, 2014.
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An approach to the spherical mean Radon
transform with detectors on a line

R.H. Aramyan

Russian Armenian University
E-mail: rafikaramyan@yahoo.com

Introduction. Medical tomography has had a huge impact on medical
diagnostics. The classical Radon transform maps a function to its integrals
over straight lines and serves as the basis of x-ray Computer Tomography.
Recently researchers have been developing novel methods that combine
different physical types of signals. The most successful example of such
a combination is the thermoacoustic tomography (TAT). Thermoacoustic
theory has been discussed in many literature reviews such as [2].

Section 1. We denote by R3 the Euclidean 3 - dimensional space. Let
S1 be the unit circle with the center at the origin O ∈ R2. By S(p, r) we
denote the circle of radius r > 0 centered at p ∈ R2.

We consider the circular Radon transform on the plane. For a contin-
uous function f supported in the compact region G ∈ R2 we have

Mf(p, r) =
1

2π

∫
S1

f(p+ rω) dϕ, for (p, r) ∈ L× [0,∞). (1)

Here dϕ is the circular Lebesgue measure on S1, ω = (sinϕ, cosϕ). The
value Mf(p, r) is the average of f over the circle S(p, r) with center p ∈ L
and radius r > 0

TAT motivated the study of the following mathematical problem. For
a continuous, real valued function f supported in a compact region G,
we are interested in recovering f from the mean value Mf(p, r) of f over
spheres S(p, r) centered on L; that is, given Mf(p, r) for all p ∈ L and
r > 0, we wish to recover f .

In order to implement the TAT reconstruction the following problems
arise. For which sets L the data collected by transducers placed along L
is sufficient for unique reconstruction of f and what are inversion formu-
las.Agranovsky and Quinto in [1] have proved several significant unique-
ness results for the spherical Radon transform.

Exact inversion formulas for the spherical Radon transform are cur-
rently known for boundaries of special domains, including spheres, cylin-
ders and hyperplanes ([2]).
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The article suggests a new approach what is called a consistency
method for the inversion of the spherical Radon transform in 2D with
detectors on a line. By means of the method a new iteration formula
was found which give an practical algorithm to recover an unknown func-
tion supported in a compact region from its spherical means over circles
centered on a line outstand the region.

The consistency method, suggested by the author of the paper, first
was applied in [3] to inverse generalize Radon transform on the sphere.

In this paper was proved the following theorem. On the plane consider
usual cartesian system of coordinate choosing L as the x-axis. Mf(p, r)
is the average of f over a circle with center p ∈ L and radius r > 0.

Theorem 1. Let f be a continuous, real valued function supported in the
compact region G located on one side of the line L. For (x, y) ∈ G the
value f(x, y) depends on values Mf on a neighborhood of p = (x, 0) ∈ L
and 0 ≤ r ≤ y.

Also was found an iteration inversion formula.

References

[1] M. L. Agranovsky, E. T. Quinto. Injectivity sets for the Radon trans-
form over circles and complete systems of radial functions. J. Funct.
Anal., 139:383–414, 1996.

[2] P. Kuchment and L. A. Kunyansky. Mathematics of thermoacoustic
and photoacoustic tomography. J. Appl. Math., 19:191–224, 2008.

[3] R.H. Aramyan. Generalized Radon transform on the sphere. Analysis,
30(3):271–284, 2010.

11 



Armenian Mathematical Union Annual Session 2017

On harmonic conjugation problem in spaces
of quaternion-valued functions

K.L. Avetisyan

Yerevan State University
E-mail: avetkaren@ysu.am

The classical M. Riesz theorem on harmonic conjugates in the Hardy
spaces over the unit disc D asserts that for a harmonic function u in the
Hardy space hp(D) for some p, 1 < p < ∞, its harmonic conjugate v is
also in hp(D), and so the holomorphic function f = u + iv is in Hp(D).
Hardy and Littlewood revealed the same harmonic conjugation property
for Bergman spaces in D. Later, analogous results were obtained for vari-
ous function spaces such as weighted Bergman, Bloch, Dirichlet and oth-
ers. The problem of harmonic conjugates in the framework of quaternion
analysis was studied by Sudbery [1] who established an explicit formula
for harmonic conjugates in R4 such that a quaternion-valued monogenic
function is defined. By another integral formula we construct harmonic
conjugates in reduced quaternions in R3 and prove the preservation of
weighted Bergman and Dirichlet spaces under harmonic conjugation op-
erator over the unit ball in R3. Some preceding results can be found in
[2], [3].

References

[1] A. Sudbery. Quaternionic analysis, Math. Proc. Camb. Phil. Soc.,
85:199–225, 1979.

[2] K. Avetisyan, K. Gürlebeck and W. Sprössig. Harmonic conjugates
in weighted Bergman spaces of quaternion-valued functions. Comput.
Methods Funct. Theory, 9:593–608, 2009.

[3] J. Morais, K. Avetisyan and K. Gürlebeck. On Riesz systems of har-
monic conjugates in R3. Math. Meth. Appl. Sci., 36(12):1598–1614,
2013.
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On Defect Numbers of the Dirichlet Problem

A.H. Babayan, S.H. Abelyan

National Polytechnic University of Armenia, Yerevan
E-mail: barmenak@gmail.com, seyran.abelyan@gmail.com

Introduction. We consider the Dirichlet problem for a sixth order prop-
erly elliptic equation in a unit disc. The new formula for the determination
of the defect numbers of the problem is obtained.

Formulation of the problem and obtained result. Let D be the
unit disk of the complex plane and Γ = ∂D its boundary. We consider in
D sixth order differential equation

6∑
k=0

Ak
∂6u

∂xk∂y6−k (x, y) = 0, (x, y) ∈ D, (1)

where Ak are complex constants (A0 6= 0). We suppose that the roots

λj (j = 1, . . . , 6) of characteristic equation
∑6
k=0Akλ

6−k = 0, satisfy the
condition

λ1 = i 6= λ2 = λ3, λ4 = λ5 = λ6 6= −i, =λ3 > 0, =λ4 < 0. (2)

We consider the Dirichlet problem in the classical formulation, that is, we
seek the solution of (1) in the class C6(D)

⋂
C(2,α)(D) satisfying Dirichlet

conditions on the boundary Γ.

∂ju

∂rj

∣∣∣∣
Γ

= fj(x, y) j = 0, 1, 2; (x, y) ∈ Γ. (3)

Here fj ∈ C(2−j,α)(Γ), (j = 0, 1, 2) are given functions. The condition (2)
implies that the equation (1) is properly elliptic, therefore the problem
(1), (3) is Fredholmian (see [1], [2]). The main goal of the talk is the de-
termination of the defect numbers of this problem (the number of linearly
independent solutions of the homogeneous problem (when fj ≡ 0) and
the number of linearly independent conditions necessary and sufficient for
the solvability of the inhomogeneous problem). The general formula for
the calculation of the defect numbers was obtained in [3], but this formula
only provides the algorithm for the determination of these numbers. Fur-
ther, in [4], it was found that for some cases of fourth order equation (1)
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the defect numbers may only be zero or one. In this talk we get the new
formula for the determination of the defect numbers of the problem (1),
(3).

The following statement is proven.

Theorem 1. Let’s denote

µ =
i− λ3

i+ λ3
, ν =

i+ λ4

i− λ4
, z = µν.

Then the Dirichlet problem (1), (3) is uniquely solvable if and only if

Qn(z) ≡
n−3∑
k=0

(k + 1)(k + 2)(k + 3)(k + 4)(k + 5)zk+

+

n−3∑
k=0

(n− k − 3)(n− k − 2)(n− k − 1)(n2 + 11n+

+8nk + k2 − k)zn−2+k 6= 0, n = 4, 5, . . . ,

If these conditions fail for any number n0, then the homogeneous problem
(1), (3) has nontrivial solution, which is polynomial of order n0+2. In this
case one linearly independent condition on the boundary functions fj is
necessary for the solvability of the corresponding inhomogeneous problem.
Therefore, the defect numbers of the problem (1), (3) are equal to the
number of parameters n for which Qn(z) = 0.

The numerical experiments show that if Qn(z) = 0 for some n, then
for arbitrary m 6= n we have Qm(z) 6= 0, therefore the defect numbers
may only be equal zero or one.

References

[1] J.-L. Lions, E. Magenes Problèmes aux limites non homogènes et
applications. Vol.1 Dunod. Paris, 1968.
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[4] A.O. Babayan On a Dirichlet Problem for Fourth Order Partial Differ-
ential Equation in the Case of Double Roots of Characteristic Equa-
tion. MATHEMATICA MONTISNIGRI, 32:66–82, 2015.

14 



Armenian Mathematical Union Annual Session 2017

Initiating a new trend in complex equations
studying solutions in a given domain:

problems, approaches, results

G. Barsegian

Institute of mathematics of National Academy of Sciences of Armenia
E-mail: barseg@instmath.sci.am

Abstract. There is a huge number of investigations in complex dif-
ferential equations when the solutions are meromorphic in the complex
plane. The main attention was paid to the value distribution type phe-
nomena of the solutions, particularly to the zeros (more generally to the
a-points) of these solutions.

Meantime there are very few studies of meromorphic solutions in a
given domain, particularly zeros of similar solutions weren’t touched at
all.

We initiate studies of meromorphic solutions in a given complex do-
main: we pose some new problems and give some approaches for their
solutions.

Clearly for similar studies we should have some tolls that are valid
for large classes of functions in a domain. As some tools we make use
results related to three comparatively recent topics, Gamma-lines, prox-
imity property and universal version of value distribution theory; all they
are valid for any meromorphic function in a given domain.

(∗) The work was supported by Marie Curie International Award (of
Euro union) and by position of Visiting Leading Professor (in China)
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Êðèòåðèè ïî÷òè íèëüïîòåíòíîñòè äëÿ
ãðóïï ãîìåîìîðôèçìîâ ïðÿìîé è

îêðóæíîñòè. Ñòðóêòóðíûå òåîðåìû

Ë.À. Áåêëàðÿí

Öåíòðàëüíûé Ýêîíîìèêî-Ìàòåìàòè÷åñêèé Èíñòèòóò ÐÀÍ, Ìîñêâà
Ìîñêîâñêèé Ôèçèêî-Òåõíè÷åñêèé Èíñòèòóò, Ìîñêâà
E-mail: beklar@cemi.rssi.ru, beklaryan@mailfrom.ru

Àííîòàöèÿ. Äëÿ êëàññà êîíå÷íî ïîðîæäåííûõ ãðóïï ãîìåîìîðôèç-
ìîâ ïðÿìîé è îêðóæíîñòè óñòàíîâëåí êðèòåðèé ïî÷òè íèëüïîòåíòíî-
ñòè. Â èíûõ òåðìèíàõ, äëÿ êëàññà êîíå÷íî ïîðîæäåííûõ ãðóïï äèô-
ôåîìîðôèçìîâ ïðÿìîé è îêðóæíîñòè ñ âçàèìíî òðàíñâåðñàëüíûìè
ýëåìåíòàìè òàêæå óñòàíàâëèâàþòñÿ êðèòåðèè ïî÷òè íèëüïîòåíòíî-
ñòè. Áîëåå òîãî, äëÿ òàêèõ ãðóïï ïîëó÷åíû ñòðóêòóðíûå òåîðåìû.
Ïðè äîêàçàòåëüñòâå ñòðóêòóðíûõ òåîðåì êëþ÷åâûìè ÿâëÿþòñÿ ôàêò
íàëè÷èÿ, ëèáî îòñóòñòâèÿ èíâàðèàíòíîé ìåðû, ðàíåå ïîëó÷åííûé êðè-
òåðèé ñóùåñòâîâàíèÿ èíâàðèàíòíîé ìåðû, à òàêæå åãî ïåðåôîðìóëè-
ðîâêè â òåðìèíàõ ðàçëè÷íûõ õàðàêòåðèñòèê ãðóïïû (òîïîëîãè÷åñêèõ,
àëãåáðàè÷åñêèõ, êîìáèíàòîðíûõ). Îáñóæäàåòñÿ âîïðîñ î òèïè÷íîñòè
êàê ðÿäà ñâîéñòâ îòìå÷åííûõ õàðàêòåðèñòèê, òàê è ôàêòà ñóùåñòâî-
âàíèÿ èíâàðèàíòíîé ìåðû äëÿ ãðóïï äèôôåîìîðôèçìîâ ïðÿìîé è
îêðóæíîñòè.

Áëàãîäàðíîñòè. Ðàáîòà ïîääåðæàíà Ðîññèéñêèì Ôîíäîì Ôóíäàìåí-
òàëüíûõ Èññëåäîâàíèé (ãðàíò �16-01-00110).
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Áåãóùèå âîëíû è ôóíêöèîíàëüíî
äèôôåðåíöèàëüíûå óðàâíåíèÿ òî÷å÷íîãî

òèïà. ×òî îáùåãî?

Ë.À. Áåêëàðÿí

Öåíòðàëüíûé Ýêîíîìèêî-Ìàòåìàòè÷åñêèé Èíñòèòóò ÐÀÍ, Ìîñêâà
Ìîñêîâñêèé Ôèçèêî-Òåõíè÷åñêèé Èíñòèòóò, Ìîñêâà
E-mail: beklar@cemi.rssi.ru, beklaryan@mailfrom.ru

Àííîòàöèÿ. Îäíîé èç öåíòðàëüíûõ çàäà÷ ïðè èçó÷åíèè ôóíêöèî-
íàëüíî-äèôôåðåíöèàëüíûõ óðàâíåíèé òî÷å÷íîãî òèïà ÿâëÿåòñÿ çàäà-
÷à Êîøè

ẋ(t) = g(t, x(q∗1(t)), . . . , x(q∗s (t))), t ∈ R (1)

x(t̄) = x̄, t̄ ∈ R, x̄ ∈ Rn, (2)

ãäå g : R× Rns −→ Rn � îòîáðàæåíèå êëàññà C(0); q∗j (.), j = 1, . . . , s �
äèôôåîìîðôèçìû ïðÿìîé, ñîõðàíÿþùèå îðèåíòàöèþ, ñî ñâîéñòâîì

hj < +∞, hj = sup
t∈R
|t− q∗(t)|, j = 1, 2, . . . , s.

Â èññëåäîâàíèè çàäà÷è Êîøè (1)-(2) âåñüìà âàæíà ðîëü ãðóïïû Q∗ =
< q∗1 , . . . , q

∗
s >. Ðàññìîòðèì ïîëíîå ïðÿìîå ïðîèçâåäåíèå

Kn
Q =

∏
q∈Q

Rq, Rq = Rn, q ∈ Q

ñî ñòàíäàðòíîé òèõîíîâñêîé òîïîëîãèåé è ýëåìåíòàìè κ = {xq}q∈Q
â âèäå áåñêîíå÷íûõ ïîñëåäîâàòåëüíîñòåé. Äëÿ êàæäîãî q̄ ∈ Q â ïðî-
ñòðàíñòâå áåñêîíå÷íûõ ïîñëåäîâàòåëüíîñòåé Kn

Q îïðåäåëåí ñäâèã Tq̄

(ëèíåéíîå íåâûðîæäåííîå îòîáðàæåíèå) ïî ïðàâèëó

Tq̄ : Kn
Q → Kn

Q, q̄ ∈ Q, Tq̄{xq}q∈Q = {xqq̄}q∈Q,

à òàêæå îòîáðàæåíèå

G : R×Kn
Q → Kn

Q,(
G(t,κ)

)
q

= gq(t,κ) = q̇(t)g
(
q(t), xq?1q

, . . . , xq?sq

)
, q ∈ Q.

Îïðåäåëèì áåñêîíå÷íîìåðíîå äèôôåðåíöèàëüíîå óðàâíåíèå

κ̇(t) = G(t,κ), t ∈ R, κ ∈ Kn
Q, (3)

κ(q̄(t)) = Tq̄κ(t), q̄ ∈ Q (4)
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ñ íåëîêàëüíûìè îãðàíè÷åíèÿìè (4). Ðåøåíèÿ òàêîé ñèñòåìû íàçûâà-
þòñÿ ðåøåíèÿìè òèïà áåãóùåé âîëíû.

Òåîðåìà 1. Êàæäîìó ðåøåíèþ x(t), t ∈ R èñõîäíîãî ôóíêöèîíàëüíî-
äèôôåðåíöèàëüíîãî óðàâíåíèÿ (1) ñîîòâåòñòâóåò ðåøåíèå κ(t) =
{xq(t)}q∈Q, t ∈ R ñèñòåìû (3)-(4) (ðåøåíèå òèïà áåãóùåé âîëíû) è
íàîáîðîò. Òàêèå ðåøåíèÿ ñâÿçàíû ñîîòíîøåíèÿìè xq(t) = x(q(t)), q ∈
Q. �

Áóäóò îáñóæäàòüñÿ ðÿä áîëåå îáùèõ êîíñòðóêöèé, ñâÿçàííûõ ñ
ðåøåíèÿìè òèïà áåãóùåé âîëíû.

Áëàãîäàðíîñòè. Ðàáîòà ïîääåðæàíà Ðîññèéñêèì Ôîíäîì Ôóíäàìåí-
òàëüíûõ Èññëåäîâàíèé (ãðàíò �16-01-00110).

Ñïèñîê ëèòåðàòóðû

[1] Ë.À. Áåêëàðÿí. Ââåäåíèå â òåîðèþ ôóíêöèîíàëüíî-äèôôåðåíöè-
îíàëüíûõ óðàâíåíèé. Ãðóïïîâîé ïîäõîä. Ì.:Ôàêòîðèàë Ïðåññ,
288 ñ., 2007.

[2] ß.È. Ôðåíêåëü, Ò.À. Êîíòîðîâà. Î òåîðèè ïëàñòè÷åñêîé äåôîðìà-
öèè è äâîéñòâåííîñòè. ÆÝÒÔ, 8:89�97, 1938.

[3] Ë.À. Áåêëàðÿí. Î êâàçèáåãóùèõ âîëíàõ. Ìàòåìàòè÷åñêèé Ñáîð-
íèê, 201(12):21�68, 2010.

[4] Ë.À. Áåêëàðÿí. Êâàçèáåãóùèå âîëíû êàê åñòåñòâåííîå ðàñøèðå-
íèå êëàññà áåãóùèõ âîëí. Âåñòíèê Òàìáîâñêîãî ãîñóäàðñòâåííîãî
óíèâåðñèòåòà, 19(2):331�340, 2014.

[5] Ë.À. Áåêëàðÿí, Í.Ê. Õà÷àòðÿí. Îá îäíîì êëàññå äèíàìè÷åñêèõ
ìîäåëåé ãðóçîïåðåâîçîê. Ôóíäàìåíòàëüíàÿ è ïðèêëàäíàÿ ìàòå-
ìàòèêà, 53(10):1649�1667, 2013.

[6] Ë.À. Áåêëàðÿí. Íîâûé ïîäõîä â âîïðîñå ñóùåñòâîâàíèÿ ïåðèîäè-
÷åñêèõ ðåøåíèé äëÿ ôóíêöèîíàëüíî-äèôôåðåíöèàëüíûõ óðàâíå-
íèé òî÷å÷íîãî òèïà. Èçâåñòèÿ Àêàäåìèè Íàóê, (â ïå÷àòè), 2017.

19 



Armenian Mathematical Union Annual Session 2017

On Noethericity of differential operators in
anisotropic spaces

A.A. Darbinyan, A.G. Tumanyan

Russian-Armenian (Slavonic) University, Yerevan
E-mail: armankri@yahoo.com, ani.tumanyan92@gmail.com

This paper is devoted to research on Noethericity of differential opera-
tors, acting in anisotropic Sobolev spaces in Rn. It is continuation of
the authors’ works [1, 2, 3]. In this work we study a priori estimates for
differential operators in anisotropic spaces, solvability conditions of cor-
responding equations, necessary and sufficient conditions for Noethericity
of the special classes of semielliptical operators. Noethericity of semiel-
liptical operators is also studied in [4, 5].
Consider differential form

P (x,D) =
∑

(α:ν)≤s

aα(x)Dα, (1)

where n, s ∈ N, α ∈ Zn+, ν ∈ Nn (Zn+ – set of n-dimensional multi-indices,
Nn – set of multi-indices with natural components), (α : ν) = α1

ν1
+ ... +

αn

νn
, Dα = Dα1

1 ...Dαn
n , Dk = i−1 ∂

∂xk
, x = (x1, ..., xn) ∈ Rn, aα(x) are

sufficiently smooth functions.
For k ∈ Z+, ν ∈ Nn denote by Hk,ν(Rn) the space of measurable functions
{u} equipped with the norm

‖u‖k,ν =
∑

(α:ν)≤k

‖Dαu‖L2(Rn) <∞. (2)

Let q(x) be positive function such that 1
q(x) ⇒ 0 when |x| → ∞. Denote

by Hk,ν
q (Rn) the space of measurable functions {u} equipped with the

norm
‖u‖k,ν,q =

∑
(α:ν)≤k

∥∥∥Dαu · q(k−(α:ν))
∥∥∥
L2(Rn)

<∞. (3)

Denote by (P ;Hk,ν) and (P ;Hk,ν
q ) operators defined by differential form

P (x,D) (see (1)) acting, correspondingly, from Hk+s,ν(Rn) to Hk,ν(Rn)
and from Hk+s,ν

q (Rn) to Hk,ν
q (Rn).

With the certain rate at infinity of the coefficients of the differential
form P (x,D) criteria of Noethericity is obtained for operators (P ;Hk,ν)
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(P ;Hk,ν
q ). The special a priori estimates are obtained in weighted anisotropic

spaces and necessary conditions are established for them. Using these re-
sults index equality to zero is proved for the special class of semielliptical
operators.
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Sufficient conditions for a balanced bipartite
digraph to be even pancyclic

S.Kh. Darbinyan

Institute for Informatics and Automation Problems of NAS RA
E-mail: samdarbin@ipia.sci.am

We consider directed graphs (digraphs) without loops and multiple
arcs. Theminology and notation not described below follows [2]. Let
D be a digraph of order n. Bondy suggested (see [6] by Chvátal) the
following metaconjecture:

Metaconjecture (Bondy). Almost any non-trivial condition of a
undirected graph (digraph) which implies that the graph (digraph) is Hamil-
tonian also implies that the undirected graph (digraph) is pancyclic. (There
may be a ”simple” family of exceptional graphs (digraphs)).

There are various sufficient conditions for a digraph (undirected graph)
to be Hamiltonian are also sufficient for the digraph (undirected graph)
to be pancyclic unless some extremal cases which are characterized (see,
e.g., [1, 2, 4, 6, 8, 9]). In [3], it was proved the following theorem.

Theorem 1 (Bang-Jensen, Gutin, Li [3]). Let D be a strongly connected
digraph of order n ≥ 2. Suppose that min{d(x), d(y)} ≥ n− 1 and d(x) +
d(y) ≥ 2n − 1 for any pair of non-adjacent vertices x, y with a common
in-neighbour. Then D is Hamiltonian.

An analogous of Theorem 1 for bipartite digraphs was given by Wang
[10], and recently strengthened by the author [7].

Theorem 2 (Wang [10]). Let D be a strongly connected balanced bipartite
digraph of order 2a, where a ≥ 1. Suppose that, for every pair of vertices
{x, y} with a common out-neighbour, either d(x) ≥ 2a−1 and d(y) ≥ a+1
or d(y) ≥ 2a− 1 and d(x) ≥ a + 1. Then D is Hamiltonian.

Definition 1. Let D(8) be the bipartite digraph with partite sets X =
{x0, x1, x2, x3} and Y = {y0, y1, y2, y3}, and A(D(8)) contains exactly the
arcs y0x1, y1x0, x2y3, x3y2 and all the arcs of the following 2-cycles:
xi ↔ yi, i ∈ [0, 3], y0 ↔ x2, y0 ↔ x3, y1 ↔ x2 and y1 ↔ x3.

Theorem 3 (Darbinyan [7]). Let D be a strongly connected balanced bi-
partite digraph of order 2a, where a ≥ 4. If D max{d(x), d(y)} ≥ 2a− 1
for every pair of vertices {x, y} with a common out-neighbour, then D is
Hamiltonian unless D is isomorphic to the digraph D(8).
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Motivated by the Bondy metaconjecture, we set the following:
Problem. Characterize those digraphs which satisfy the conditions of
Theorem 3 (or 2) but are not even pancyclic.

In this note we prove the following theorems.

Theorem 4. Let D be a strongly connected balanced bipartite digraph of
order 2a ≥ 8. If D contains a cycle of length 2a−2 and max{d(x), d(y)} ≥
2a− 2 for every pair of vertices {x, y} with a common out-neigbour, then
D contains cycles of every length 2k, 1 ≤ k ≤ a− 1.

Theorem 5. Let D be a strongly connected balanced bipartite digraph of
order 2a ≥ 8. If D is not a directed cycle and max{d(x), d(y)} ≥ 2a − 1
for every pair of vertices {x, y} with a common out-neighbour, then the
following holds: (i) D contains a cycle of length 2a − 2; (ii) D contains
cycles of all even lengths less than equal to 2a or D is isomorphic to the
digraph D(8).
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A discrete analog of Ramanujan’s method

L. Gevorgyan
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E-mail: levgev@hotmail.com

Solution of equation is one of the oldest and principal problems of
mathematics. Bisection, chords, secant and Newton-Raphson methods
are classical tools. Less known is Ramanujan method of solution of a
certain class of equations

f (z) = 0 (1)

with analytic functions satisfying the condition f (0) 6= 0 and having only
one root z0 having the least modulus. In this case the function

g (z) =
1

f (z)

will be analytic in a neighborhood of 0 and let

g (z) =

∞∑
n=0

cnz
n

be its Mac-Laurin series expansion.
According to ([1], p. 42) ”Ramanujan’s discourse is characteristically

brief; he ... claims, with no hypotheses, that cn−1

cn
approaches a root of

(1)”.
Ramanujan method is generalized in [2].
Let f be analytic in some domain D function, having a finite number

of (not obligatory simple) zeros in each bounded subset of D. Let z ∈
D, f (z) 6= 0. Denote

P0 (z) = 1/f (z) and Pn (z) =

(
dn

1

f

)
(z) , n ∈ N, (2)

where d is the differentiation operator.
Theorem. Let P0 be meromorphic in D, z ∈ D, f (z) 6= 0. The formula

a = z + lim
n→∞

n
Pn−1 (z)

Pn (z)
(3)

defines the nearest to z zero of f. If there are many such zeros, then a is
the zero of the highest order. The limit does not exist if there are many
concurrent zeros of the highest order in the same distance from z.
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Formula (3) is hard to implement, as it requires successive calculation
of derivatives. Below we propose more realistic method of solution. Let
{z0, z1, . . . , zp} be a set of complex numbers and G = {g(z0), g(z1), . . . ,
g(zp)}. Divided differences are defined inductively

g [z0] = g (z0) , g [z0, z1, · · · , zk] =
g [z1, · · · , zk]− g [z0, · · · , zk−1]

zk − z0
. (4)

Denote by Dk the k−th divided difference (4) for the function g = 1/f.
Define a sequence {zn}∞0 by the following formula

zn+1 = zn +
Dn−1

Dn
, n ∈ N. (5)

The initial values z0 and z1 are chosen as close as possible to the root
to be found. Note that for n = 1 this formula coincides with the secant
method.

Table 1: Approximate roots of equation f (x) = 0

Iteration J0 (x) tanx− x sinx− x + 0.5

0 2 4 1
1 3 5 2
2 2.462638992987265 3.486817237244572 1.366316960917713
3 2.402495017462122 4.679485154090827 1.506993668228667
4 2.404824149524840 4.495488676902464 1.497332091360431
5 2.404825557694929 4.493406165121571 1.497300389340039
6 2.404825557695773 4.493409457914472 1.497300389095892
7 2.404825557695773 4.493409457909064 1.497300389095893

References

[1] B. Berndt. Ramanujan’s notebooks, Part-1. Springer-Verlag, USA,
1985.

[2] L.Z. Gevorgyan. On Ramanujan method of solutions of equations
with analytic functions. Rep. Nat. Acad. Sci., 116(4):278–284, 2016.

26 



Armenian Mathematical Union Annual Session 2017

Geodesic flows on the hypersurface of the
energy of a three-body system

A.S. Gevorkyan1,2

1Institute for Informatics and Automation Problems NAS of Armenia
2Institute of Chemical Physics NAS of Armenia

E-mail:gashot@ipia.sci.am

Introduction. In the recent work [1] it is proved that the three-particle
classical problem in the most general case is equivalent to the problem
of geodesic flows on a Riemannian manifold. As shown, the formulation
of the problem on the curved space allows to reveal the hidden internal
symmetries of the dynamic system, which helps to achieve a more com-
plete reduction of the problem. Namely, within the framework of the new
representation, the three-body problem instead of the system of the 8th
order is described by the system of the 6th order.

In this article, we consider the problem of three bodies under the influ-
ence of the environment, taking into account that the influence of the en-
vironment on the body system has both regular and stochastic impacts. A
new type of second-order partial differential equations describing geodesic
flows on a Riemannian manifold is derived. It is proved that the timing
parameter in this equation branches during the evolution that making the
equation irreversible relative to it.
Section 1. The classical three-body problem in general case reduces to
the system of the 6th order [1]:

ξ̇1 = A1({x̄}, {ξ̄}), ξ1 = ẋ1,

ξ̇2 = A2({x̄}, {ξ̄}), ξ2 = ẋ2,

ξ̇3 = A3({x̄}, {ξ̄}), ξ3 = ẋ3, ξ̇i = dξi/ds, (1)

where {ξ̄} = (ξ1, ξ2, ξ3) and {x̄} = (x1, x2, x3), in addition, the following
designations are made:

A1({x̄}, {ξ̄}) = a1
{

(ξ1)2 − (ξ2)2 − (ξ3)2 − Λ2
}

+ 2ξ1
{
a2ξ

2 + a3ξ
3
}
,

A2({x̄}, {ξ̄}) = a2
{

(ξ2)2 − (ξ3)2 − (ξ1)2 − Λ2
}

+ 2ξ2
{
a3ξ

3 + a1ξ
1
}
,

A3({x̄}, {ξ̄}) = a3
{

(ξ3)2 − (ξ1)2 − (ξ2)2 − Λ2
}

+ 2ξ3
{
a1ξ

1 + a2ξ
2
}
.

In (1) s = s({x̄}) is the timing parameter, {x̄} = (x1, x2, x3) ∈ Mt

andMt is the tangent bundle of the 3-dimensional Riemannian manifold
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M(3), which has a conformally Euclidean metric; gij({x̄}) = g({x̄})δij ,
where g({x̄}) = [E − U({x̄})] > 0, E and U({x̄}) are the total en-
ergy and total interaction potential of bodies system, respectively, δij
is the Kronecker delta function. In equations system (1), ai({x̄}) =
−(1/2)∂xi ln g({x̄}) and Λ({x̄}) = Jg−1({x̄}), where J = const is the
total angular momentum.

Let external random forces influence the three-body system. Then the
dynamical system, in particular, can be described by stochastic equations
of the Langevin type:

χ̇µ = Aµ({χ}) + ηµ(s), {χ} = ({ξ̄}, {x̄}), µ = 1, 6, (2)

where Aµ({χ}) are regular functions (1), while ηµ(s) - random functions.

Definition 1. The joint probability density for the independent variables
can be represented in the form:

P ({χ}, s) =

6∏
µ=1

〈
δ
[
χµ(s)− χµ

]〉
. (3)

Theorem 1. If the random functions ηµ(s) satisfy the following correla-
tion relations:

〈ηµ(s)〉 = 0, 〈ηµ(s)ηµ(s′)〉 = 2εδ(s− s′), ε = const, (4)

then, using the equations (2), it is possible to obtain the equation of joint
probability distribution for geodesic trajectories in the phase space:

∂P

∂s
=

6∑
µ=1

∂

∂χµ

[
Aµ({χ}) + ε

∂

∂χµ

]
P. (5)

Note that this equation is not an ordinary equation, because the timing
parameter s ∈ M(3) branches during the evolution of dynamical system,
making the equation (5) an irreversible with respect to ”s ”. Moreover,
this equation is not a Cauchy problem because of the branching of the
timing parameter. The latter generates new geodesic flows with different
topological features, which can further evaluates to various asymptotic
subspaces of the 6-dimensional phase space. An expression is also obtained
for the probabilities of transitions between different asymptotic scattering
channels. More details about the work can be found in [1].
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The classical three-body problem and the
Poincaré conjecture
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Introduction. As shown [1], the classical three-body problem in the
most general case can reduced to the system of 6th order, if it to for-
mulate as a problem of geodesic flow on the Riemannian manifold M ∼=
M(3) × S3

t , where M(3) is the conformally Euclidean space defined by
the metric gij = g({x̄})δij , while δij denotes the Kronecker symbol,

{x̄} ≡ (x1, x2, x3) ∈ M(3)
t is the set of coordinates on the tangential

bundle, S3
t 3 (x4, x5, x6) ≡ {x} is the local rotation group SO(3). In ad-

dition, g({x̄}) = [E − U({x̄})] > 0, where E and U({x̄}) the total energy
and the full interaction potential between bodies, respectively. In proving
the equivalence of the problem of geodesic flow on the Riemannian man-
ifold and the original Newtonian three-body problem a key role is played
the homomorphism theorem between of the Euclidean subspace E6 ⊂ R6

and the six-dimensional manifold M, which is an essential generalization
of the Poincaré conjecture.

Theorem. The Euclidean subspace E3 ⊂ R3, in which relative move-
ments of classical bodies occur, is homeomorphic to the three-dimensional
manifold S(3), generated by the underdetermined system of algebraic equa-
tions:

α2
1 + β2

1 + γ2
1 = g({x̄}), α1α2 + β1β2 + γ1γ2 = 0,

α2
2 + β2

2 + γ2
2 = g({x̄}), α1α3 + β1β3 + γ1γ3 = 0,

α2
3 + β2

3 + γ2
3 = g({x̄}), α2α3 + β2β3 + γ2γ3 = 0, (1)

that in its turn is homeomorphic to the three-dimensional manifoldM(3).

Proof. Let us consider a linear infinitesimal element (ds) in both coordi-
nate systems {ρ} = (ρ1, ..., ρ6) ∈ E6 and {x} = ({x̄}, {x}) ∈M. Equating
them, we can write:

(ds)2 = γαβ({ρ})dραdρβ = gµν({x̄})dxµdxν , α, β, µ, ν = 1, 6, (2)

from which one can find the following system of algebraic equations:
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γαβ({ρ})ρα;µρβ;ν = gµν({x̄}) = g({x̄})δµν , ρα;µ = ∂ρα/∂x
µ. (3)

Recall that the derivatives ρα;µ define coordinate transformations from
{ρ} to {x} (conditionally we will call direct transformations).

From (2), in a similar way, we obtain the system of algebraic equations
for the derivatives that determine inverse transformations:

γαβ({ρ})δαᾱδββ̄g−1({x̄}) = xµ; ᾱx
ν
; β̄ δµν , ᾱ, β̄ = 1, 6, (4)

where xµ;α = ∂xµ/∂ρα.
At first we consider the system of equations (3), which is related to di-

rect coordinate transformations. It is not difficult to see that the system of
algebraic equations (3) is underdefined with respect to the variables ρα;µ,
since it consists of 21 equations, while the number of unknown variables
is 36. Obviously, when these equations are compatible, then the system
(3) has an infinite number of real and complex solutions. Note that for
the classical three-body problem, the real solutions of the system (3) are
important, which at the general examination form a 15-dimensional mani-
fold. Since the tensor gµν({x̄}) is still defined in a rather arbitrary way we
can impose additional conditions on it in order to determine the minimal
dimension of the manifold allowing a separation of the base M(3) from
the layer S3

t .
Let us make a new designations:

αµ = ρ1;µ, βµ = ρ2;µ, γµ = ρ3;µ, uµ = ρ4;µ, vµ = ρ5;µ, wµ = ρ6;µ. (5)

Taking into account the fact that the tensor gµν({x̄}) still fairly general
one, we can require fulfillment for its elements the following conditions:

α4 = α5 = α6 = 0, β4 = β5 = β6 = 0, γ4 = γ5 = γ6 = 0,

u1 = u2 = u3 = 0, v1 = v2 = v3 = 0, w1 = w2 = w3 = 0. (6)

Using (5) and conditions (6) from the equation (3) we can obtain two in-
dependent underdetermined systems of algebraic equations (six equations
nine unknowns), the first of which is the system (1), while the second is de-
fined in each point of {x̄}i ∈M(3) and is related to the set of derivatives
of external coordinates (see (5)). The manifold S(3) is in a one-to-one
mapping on the one hand with the subspace E3 ∈ {ρ̄} = (ρ1, ρ2, ρ3) and
on the other hand with the manifold M(3). This assertion follows from
the fact that all points of the manifold M(3) and the internal space E3

are pairwise connected through the corresponding derivatives, which, as
unknown variables, enter the algebraic equations system (1). Lastly, given
the fact, that there are also inverse coordinate transformations, it can be
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argued that S(3) is homeomorphic as to E3 as well as M(3). From this
follows, that E3 and M(3) are homeomorphic too.

Theorem is proved.
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Definition 1 (see [3] or [4]). We will say that a polynomial P is more
powerful than a polynomial Q and write as P > Q (or Q < P ), if there
exists a constant c > 0 such that

|Q(ξ)| ≤ c[|P (ξ)|+ 1] ∀ξ ∈ Rn.

Definition 2. Let λ ∈ Rn. A polynomial R(ξ) is called λ–homogeneous
(generalized homogeneous) of λ – order dR = dR(λ) if P (tλξ) :=
P (tλ1 ξ1, . . . , t

λn ξn) = td P (ξ) for all ξ ∈ Rn and for any t > 0.

For a λ–homogeneous polynomial R(ξ) we denote:
Σ(R) := {η ∈ Rn, |η| = 1, R(η) = 0}, A(R) := {α ∈ Nn0 : DαR(η) 6= 0}
and ∆(R) := min

α∈A(R)
|α|.

An interesting application of the operator comparison is the question
of adding lowest terms to a given (elliptic, hypoelliptic, hyperbolic etc.
(see, for example, [1]-[5])) operator that does not violate its character,
i.e. preserves its ellipticity, hypoellipticity etc. For example, in [4] the
following results are proved:

1) Let P be a hypoelliptic polynomial of order d0, R be a λ–homogeneous
polynomial of λ–order d(Q) < d0 and R < P0, then P +R is also hypoel-
liptic;

2) If a polynomial P, with in general complex coefficients, is hypoel-
liptic and Q < P then there exists a number ε > 0 such that for any
complex number a : |a| < ε the polynomial P + aQ is also hypoelliptic.

This and other examples, the number of which can be multiplied, show
the relevance of the problem of finding polynomialsQ having a lower power
then a given (in particular, a generalized–homogeneous) polynomial P.

The purpose of this report is the following.
Theorem. Let P and Q be λ–homogeneous polynomials λ–orders dP

and dQ respectively, with P > Q. Then
1) dP ≥ dQ,
2) Σ(Q) ⊃ Σ(P ),
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3) <(Q) ⊂ <(P ),
4) for each point η ∈ Σ(P ) there exists a neighborhood U(η) and a constant
c > 0 such that

|Q(ξ)| ≤ c |P (ξ)|
dQ
dP ∀ξ ∈ U(η) (1)

5)
dQ
dP
≤ ∆(η,Q)

∆(η, P )
∀η ∈ Σ(P ) (2)

6) Q < P
dQ
dP , i.e there is a number c > 0 such that

|Q(ξ)| ≤ c [1 + |P (ξ)|
dQ
dP ] ∀ξ ∈ Rn. (3)
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The present talk is devoted to the necessary and sufficient conditions
of semigroups, which polynomially satisfy the following hyperidentities
(1)-(3).

Theorem 1. The semigroup Q(·) polynomially satisfies the following hy-
peridentity

F (F (x, x, x) , x, x) = F (x, x, F (x, x, x)) (1)

iff Q(·) is a semigroup with the identity:

x3 = x2.

Theorem 2. The semigroup Q(·) polynomially satisfies the following hy-
peridentity

F (F (x, x, x) , x, x) = F (x, x, F (x, y, x)) (2)

iff Q(·) is a semigroup with the identities:{
x2y = xy,
xy2 = xy

Theorem 3. The semigroup Q(·) polynomially satisfies the following hy-
peridentity

F (F (x, x, x) , x, y) = F (x, x, F (x, x, y)) (3)

iff Q(·) is a semigroup with the identities:{
x2y = xy,
xy2 = xy
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Monotone maps on matrices are invertible
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This talk is based on series of joint works with G. Dolinar, M. Efimov and
J. Marovt.

The first result on transformations preserving matrix invariants is due
to Frobenius. This result describes the structure of linear maps T pre-
serving the determinant function, i.e., detX = detT (X) for all X. Later
there were several extension of this result which are due to Dieudonné,
Schur, Dynkin and others. Different methods and techniques are used to
obtain these results. Along the same lines, there was an intensive investi-
gation of maps preserving order relations on operator and matrix algebras
during the past decades.

There are many order relations on matrices. Some of them are origi-
nated from semigroup theory, for example, the orders by Hartwig, Nam-
booripad and Drazin. Order relations on matrices are important for the-
oretical studies and applications.

Monotone transformation with respect to a particular order relation
is a map which preserves this order. We show that surjective monotone
additive transformations on matrices with respect to several orders are au-
tomatically bijective, investigate their properties and provide a complete
characterization of such transformations.
Acknowledgement. This research was supported by the RFBR Grant
15-01-01132.
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The present work is devoted to the study of one class of submanifolds
in pseudoeuclidean space E2n

n . This class of submanifolds M ⊂ E2n
n of

dimension 2m satisfying condition 2m > n is determined by relations

ωm+i = ωi, ωm+i = 0, i = 1, 2, . . . , n−m. (1)

The structure equations of the total space E2n
n can be reduced to the

form
dωI = ωI

K ∧ ωK , dωI = −ωK
I ∧ ωK ,

dωI
K = ωI

P ∧ ωP
K , I,K, P = 1, 2, . . . , n.

(2)

We’ll use the following indexation here: i, k = 1, . . . , n − m; a, b =
n−m+1, . . . ,m. The metric form of the total pseudoeuclidean Rashevsky
space E2n

n defined by the invariant bilinear close nondegenerate form dϕ =
ωI ∧ ωI induces the bilinear form

dϕ∗ = ωi ∧ ωi + ωa ∧ ωa. (3)

Relations (1) are identities on M . Exterior differentiation of these
identities and applications of general structure equations come to the fol-
lowing two identities:(

ωm+i
m+k + ωk

i

)
∧ ωk + ωa

i ∧ ωa + ωm+i
k ∧ ωk + ωm+i

a ∧ ωa = 0,
ωk
m+i ∧ ωk + ωa

m+i ∧ ωa = 0.
(4)

If the submanifold M has the structure of double fiber bundle then
ωi
m+k∧ωk = 0 and ωa

m+k∧ωk = 0. The second identity comes to the form
ωa
m+i ∧ ωa = 0 and we can see that the secondary forms ωa

m+i are linear
combinations of basic principal forms ωn−m+1, . . . , ωm only. Other side
the conditions ωa

m+k ∧ ωk = 0 show that these forms have nontrivial ex-
pansions by forms ω1, . . . , ωn−m only. It’s possible if and only if ωa

m+i = 0.

So we obtain the expansion ωk
m+i = Ckp

m+iωp, Ckp
m+i = Cpk

m+i. Application
of Cartan’s lemma to the first identity from (4) gives the expansions for
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secondary forms ωm+i
m+k + ωk

i , ωa
i , ωm+i

k , ωm+i
a . Substituting these expan-

sions back in the first identity from (4) we’ll obtain some relations for
coefficients and using them we’ll come to the following equalities:

ωm+i
m+k + ωk

i = Ck
ipω

p + Ck
iaω

a + Ckp
i ωp + Cka

i ωa,

Ckp
i = Cpk

i , Ck
ip = Ck

pi;
ωa
i = Ca

ikω
k + Ca

ibω
b + Cak

i ωk + Cab
i ωb, C

a
ik = Ca

ki, C
ab
i = Cba

i ;

ωm+i
k = Cm+i

kp ωk + Cm+i
ka ωa + Cp

ikωp + Ca
ikωa, C

m+i
kp = Cm+i

pk ;

ωm+i
a = Cm+i

ka ωk + Cm+i
ab ωb + Ck

iaωk + Cb
iaωb, C

m+i
ab = Cm+i

ba .

(5)

Substitution of relations ωa
m+i = 0 in the general structure equations

comes to the conditions

ωa
p ∧ ωp

m+k = 0 or Cpt
m+kω

a
p ∧ ωt = 0. (6)

We’ll study the case when for at least one value of the index i (=
1, . . . , n −m) the matrix (Cpt

m+k) is nondegenerate: det(Cpt
m+k) 6= 0. Us-

ing the Cartan’s lemma we see, that the form Cpt
m+kω

a
p is the linear com-

bination of basic principal forms ω1, . . . , ωn−m only and then applying
the conditions det(Cpt

m+k) 6= 0 we come to the conclusion that secondary
forms ωa

i have nontrivial expansions by basic forms ω1, . . . , ωn−m only:
ωa
i = Cak

i ωk. Substitution of this expansion in the identity (6) comes to
the algebraic relation

Cip
m+kC

at
i = Cit

m+kC
ap
i .

The following statement is true.

Theorem. The metric connection of 2n dimensional pseudoeuclidean
Rashevsky space E2n

n induces the structure of double fiber bundle on 2m
dimensional (2m > n) submanifold M defined by equations (1) with special
type affine connection on M determined by forms ωi, ωa, ωi, ωa, ωi

k, ωa
b ,

ωi
a and functions Cak

i , Cip
m+k (i, k = 1, . . . , n−m; a, b = n−m+1, . . . ,m),

satisfying structure equation

dωi = ωi
k ∧ ωk + ωi

a ∧ ωa, dωa = ωa
b ∧ ωb + Cak

i ωk ∧ ωi,

dωi = −ωk
i ∧ ωk − Cak

i ωk ∧ ωa, dωa = −ωk
a ∧ ωk − ωb

a ∧ ωb,

dωi
k = ωi

p ∧ ωp
k + Cap

k ωi
a ∧ ωp, dω

a
b = ωa

c ∧ ωc
b + Cak

i ωi
b ∧ ωk,

dωi
a = ωi

p ∧ ωp
a + ωi

b ∧ ωb
a,

dCak
i = Cap

i ωk
p + Cbk

i ωa
b − Cak

p ωp
i − Cap

i Cbk
i ωb + Cakp

i ωp

is induced on submanifold M .
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Some problems of spectral theory

T.N. Harutyunyan
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First, we investigate the dependence of spectral data of Sturm-Liouville
operator on parameters defining the boundary conditions. With this aim
we introduce the concept of ”Eigenvalues function of family of Sturm-
Liouville operators” (EVF) and investigate its properties.
Secondly we solve the inverse Sturm-Liouville problem by EVF.
We also provide an analogue of uniqueness theorem (in inverse problem)
of Marchenko and one generalization of theorem of Ambarzumian.
New uniqueness theorems we also prove in inverse problems for canonical
Dirac systems.
We give the description of isospectral Dirac operators.
We have proved, that in common case the analogue of Ambarzumian
theorem for Dirac operator is not true, but in the same time, we describe
particular cases, when there are analogues of Ambarzumian theorem.
We also give some new results in constructive solution of inverse problem
for Dirac system.
Acknowledgement. This work was supported by State Committee of
Science MES RA in frame of the research project No. 15T-1A392.
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About the solvability of regular hypoelliptic
equations in Rn

G.A. Karapetyan, H.A. Petrosyan
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In the current work the unique solvability of regular hypoelliptic equa-
tions in multianisotropic weighted spaces is proved by means of special
integral representation of functions through a regular operator. The ex-
istence of the solutions is proved by constructing approximate solutions
using multianisotrpic integral operators.The paper presents a generaliza-
tion of the results obtained by G.V. Demidenko in [1]-[2], where approxi-
mate solutions for quasi-elliptic equations are constructed in Rn by using
a special integral representation obtained by S.V. Usepnski in [3]. The
difficulty of studying regular hypoelliptic equations lies in the fact that
if the parts of elliptic and quasi-elliptic operators with higher order are
respectively homogeneous and generalized homogeneous, then the part of
the regular operator with the higher order is multi-nonhomogeneous. In
order to arrive at the current results, as a matter of fact, we used a spe-
cial integral representation via multianisotropic kernels and estimates for
multi-anisotropic kernels obtained in [4]-[6].

Consider the differential operator

P (D) =
∑
α∈∂′N

aαD
α (1)

with real coefficients aα. Suppose that the operator P (D) is a regular
operator, i.e. there exists a constant number χ > 0, such that for any
ξ ∈ Rn the following inequality holds:

|P (ξ)| =

∣∣∣∣∣ ∑
α∈∂′N

aαξ
α

∣∣∣∣∣ ≥ χ ∑
α∈∂′N

|ξα| . (2)

For a positive parameter ν and a natural number k denote G0(ξ, ν) =

e−(νP (ξ))2k , G1(ξ, ν) = 2ke−(νP (ξ))2k(νP (ξ))
2k−1

and let Ĝ0(t, ν), Ĝ1(t, ν)
be the corresponding Fourier transforms of these functions.

For the function f ∈ Lp(Rn) denote (see [4])

Uh(x) =
1

(2π)
n
2

h−1∫
h

dν

∫
Rn

f(t)

∫
Rn

e−i(t−x,ξ)G1(ξ, ν)dξdt. (3)
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Using vertices αi : αi 6= 0 (i = 1, . . . ,M) of a polyhedron N define

a multi-anisotropic distance ρN(x) =

(
M∑
i=1

x2α
i

)1/2

and weighted spaces

WN
p,σ(Rn), which are the completion of space C∞0 (Rn) by the norm

‖U‖WN
p,σ(Rn)

=
∑
α∈N

∥∥∥∥(1 + ρN(x))
−σ(1−max

i
(µi,α))

Dα
xU(x)

∥∥∥∥
Lp(Rn)

,

where 0 < σ < 1.
Let us study the equation

P (D)U = f, (4)

where P (D) is the operator (1), which satisfies the regularity condition
(2). We prove the following theorem on the existence and uniqueness of
a solution of equation (4).

Theorem. Let |λ| > 1, |λ|p > σ > 1 − |λ| + |λ|
p . Then for any

function f ∈ Lp(Rn)
⋂
L1,−σ(Rn) the equation (4) has a unique solution

U from the class WN
p,σ(Rn), which is the limit in the class WN

p,σ(Rn) of
approximate solutions Uh, defined by (3), as h → 0, and there exists
a constant C > 0, that for any function f ∈ Lp(Rn)

⋂
L1,−σ(Rn) the

following estimate holds:

‖U‖WN
p,σ(Rn)

≤ C
(
‖f‖Lp(Rn) + ‖f‖L1,−σ(Rn)

)
.
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Î ïîñòðîåíèè íåïîäâèæíîé òî÷êè â
ïðîñòðàíñòâå l1 äëÿ îäíîé áåñêîíå÷íîé
ñèñòåìû íåëèíåéíûõ àëãåáðàè÷åñêèé

óðàâíåíèé

Õ.À. Õà÷àòðÿí, Ì.Î. Àâåòèñÿí
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Àííîòàöèÿ. Èññëåäóåòñÿ ñïåöèàëüíûé êëàññ áåñêîíå÷íîé ñèñòåìû
íåëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèé ñ ìàòðèöàìè Òåïëèöà-Ãàíêåëÿ.
Óêàçàííûé êëàññ óðàâíåíèé èìååò íåïîñðåäñòâåííîå ïðèìåíåíèå â
òåîðèè ïåðåíîñà èçëó÷åíèÿ â ñïåêòðàëüíûõ ëèíèÿõ. Äîêàçûâàåòñÿ ñó-
ùåñòâîâàíèå ïîêîìïîíåíòíî ïîëîæèòåëüíîãî ðåøåíèÿ äàííîé ñèñòå-
ìû â ïðîñòðàíñòâå l1.

Íàñòîÿùàÿ ðàáîòà ïîñâÿùåíà èçó÷åíèþ âîïðîñà ðàçðåøèìîñòè â
ïðîñòðàíñòâå l1 ñëåäóþùåé áåñêîíå÷íîé ñèñòåìû íåëèíåéíûõ àëãåá-
ðàè÷åñêèõ óðàâíåíèé:

xn =

∞∑
j=0

an−jhj (xj) +

∞∑
j=1

an+jh
∗
j (xj) , n = 0, 1, 2 . . . (1)

îòíîñèòåëüíî èñêîìîãî áåñêîíå÷íîãî âåêòîðà x = (x0, x1, x2, . . . xn, . . . )
T

(T - çíàê òðàíñïîíèðîâàíèÿ).
Â ñèñòåìå (1) áåñêîíå÷íûå ìàòðèöû Òåïëèöà è Ãàíêåëÿ

A ≡ (an−j)
∞
n,j=0 è B ≡ (an+j)

∞
n,j=0 ñîîòâåòñòâåííî óäîâëåòâîðÿþò ñëå-

äóþùèì óñëîâèÿì:

a−j = aj ; ∀ j ∈ N ∪ {0}, an > 0, ∀n ∈ Z, (2)

∞∑
i=−∞

ai = 1,

∞∑
j=0

j2aj < +∞, (3)

an+1 < an, ∀n ∈ N ∪ {0}. (4)

Ñèñòåìà (1) âîçíèêàåò â äèñêðåòíûõ çàäà÷àõ òåîðèè ïåðåíîñà èçëó-
÷åíèÿ â ñïåêòðàëüíûõ ëèíèÿõ (ñì.[1-2]). Òàêèå ñèñòåìû âñòðå÷àþòñÿ
òàêæå â êèíåòè÷åñêîé òåîðèè ãàçîâ è â p-àäè÷åñêîé òåîðèè ñòðóíû
(ñì.[3-5]).
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Îñíîâíûì ðåçóëüòàòîì íàñòîÿùåé çàìåòêè ÿâëÿåòñÿ ñëåäóþùàÿ:

Òåîðåìà. Ïóñòü ñóùåñòâóþò ÷èñëà α ∈
[
0,

1

2

]
è η ∈ (0, 1), òàêèå

÷òî

a) ïðè âñÿêîì ôèêñèðîâàííîì j ∈ N ∪ {0} ôóíêöèè hj(u) è h∗j (u) ↑
ïî u íà îòðåçêå [Pj(η), 1], ãäå

Pj(η) ≡ η
∞∑

m=j+1

am, j ∈ N ∪ {0}, (5)

b) hj , h
∗
j ∈ C[Pj(η), 1], j = 0, 1, 2, . . . ,

c) âûïîëíÿþòñÿ ñëåäóþùèå íåðàâåíñòâà

0 ≤ hj(u) ≤ 1− (1− u)α, u ∈ [Pj(η), 1], j = 0, 1, 2, . . . , (6)

h∗j (Pj(η)) ≥ η, h∗j (1) ≤ 1, j = 0, 1, 2, . . . (7)

Òîãäà, ïðè óñëîâèÿõ (2)-(4), ñèñòåìà (1) èìååò ïîêîìïîíåíòíî ïîëî-

æèòåëüíîå ðåøåíèå â ïðîñòðàíñòâå l1, ò.å ñóùåñòâóåò x = (x0, x1, x2,
. . . xn, . . .)

T , êîîðäèíàòû êîòîðîãî óäîâëåòâîðÿþò ñèñòåìå (1), ïðè-

÷åì xj > 0, ∀j ∈ N ∪ {0} è
∞∑
j=0

xj < +∞.
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The GUE turning point process at turning
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University of Rochester, Rochester, NY
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The lozenge tiling model is the model of tilings of planar regions with

the three tiles , and called lozenges. There are many different
equivalent formulations of the model, including as the dimer model on
the hexagonal lattice, as plane partitions, or as Gelfand-Tsetlin patterns.

In the thermodynamic limit of random lozenge tilings the model ex-
hibits the arctic curve phenomenon: there is a certain curve, called the
frozen boundary, outside of which the tilings become deterministic (these
are the frozen regions), and inside the randomness remains (liquid region).
In particular the frozen boundary develops special points where the liquid
region meets with two different frozen regions. These are called turning
points (see Figure 1).

 In a paper titled ”The birth of a random matrix” it was conjectured 

by Okounkov and Reshetikhin [1] that in the scaling limit of the model 

the local point process near turning points should converge to the Gaus- 

sian Unitary Ensemble (GUE) corner process from random matrix theory. 

We will discuss a joint result with Leonid Petrov establishing the GUE 

corner process when the underlying measure is the “homogeneous q to the 

volume” measure. The result can be interpreted as an Interlacing Central 

Limit Theorem. 
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We’ll also see how the GUE corner process is modified when weights
are not homogeneous. The modified process does not correspond to a
random matrix model anymore.
Acknowledgement. The work was partly supported by Simons Foun-
dation Collaboration Grant No. 422190.

References

[1] A. Okounkov and N. Reshetikhin, The birth of a random matrix, Mosc.
Math. J., 6(3), (2006), 553 – 566.

46 



Armenian Mathematical Union Annual Session 2017

Some domination parameters of graphs and
their applications

D.A. Mojdeh

Department of Mathematics, University of Mazandaran, Babolsar, Iran
E-mail: damojdeh@umz.ac.ir

Abstract. G is a simple graph with vertex set V (G) and edge set E(G)
(briefly V and E). For every vertex v ∈ V , the open neighborhood N(v)
is the set {u ∈ V | uv ∈ E} and its closed neighborhood is the set N [v] =
N(v) ∪ {v}. The open neighborhood of a set S ⊆ V is the set N(S) =
∪v∈SN(v), and the closed neighborhood of S is the set N [S] = N(S) ∪
S. d(x, y) denotes the distance between vertices x and y, ∆(G) is the
maximum degree in G.

A set D ⊆ V is a dominating set of G, if for every vertex v ∈ V −D,
there exists a vertex u ∈ D such that v and u are adjacent. The minimum
cardinality of a dominating set in G is the domination number denoted
γ(G). A minimum dominating set of a graph G is called a γ(G)-set.

A set D ⊆ V is a total dominating set (TDS) of the graph G if each
vertex of G has a neighbor in D. Equivalently, a set D ⊆ V (G) is a TDS
of a graph G if D is a dominating set of G and 〈D〉 does not contain
an isolate vertex. The cardinality of a minimum TDS in G is the total
domination number and is denoted by γt(G). A minimum TDS of a graph
G is called a γt(G)-set.

A set D ⊆ V is a total dominating set (TDS) of the graph G if each
vertex of G has a neighbor in D. Equivalently, a set D ⊆ V (G) is a TDS
of a graph G if D is a dominating set of G and 〈D〉 does not contain
an isolate vertex. The cardinality of a minimum TDS in G is the total
domination number and is denoted by γt(G). A minimum TDS of a graph
G is called a γt(G)-set.
A set S ⊆ V is a connected dominating set of G if it is a dominating set
and the induced subgraph 〈S〉 is connected. The minimum cardinality
of a connected dominating set in G is the connected domination number
denoted γc(G). A minimum connected dominating set of a graph G is
called a γc(G)-set.

A dominating set S is called an independent dominating set of G if S
is an independent set. The minimum cardinality among the independent
dominating sets of G is the independent domination number, denoted
γi(G). A minimum independent dominating set of a graph G is called a
γi(G)-set.
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A set S is called a global dominating set of G if S is a dominating set
of both G and its complement G. The global domination number γg(G)
of G is the minimum cardinality of a global dominating set of G, and a
global dominating set of minimum cardinality is called a γg(G)-set.

Keywords: Domination number, total, connected, independent, global.
2010 Mathematical Subject Classification: 05C69.

References

[1] T.W. Haynes, S.T. Hedetniemi, P.J. Slater. Fundamentals of Domi-
nation in Graphs. Marcel Dekker, NewYork, 1998.

[2] M.A. Henning. Recent results on total domination in graphs: A sur-
vey. Discrete Math., 309:32–63, 2009.

[3] M.A. Henning and A. Yeo. Total domination in graphs. Springer
Monographs in Mathematics, 2013. ISBN: 978-1-4614-6524-9 (Print)
978-1-4614-6525-6.

[4] R.C. Brigham and R.D. Dutton. Factor domination in graphs. Dis-
crete Math., 86:127–136, 1990.

[5] R.D. Dutton and R.C. Brigham. On global domination critical
graphs. Discrete Math., 309:5894–5897, 2009.

48 



Armenian Mathematical Union Annual Session 2017

Bigroup of Operations

Yu.M. Movsisyan

Yerevan State University, Armenia
E-mail: movsisyan@ysu.am

By analogy of bilattices [1, 2, 3] we consider the concepts of a bisemigroup,
a bimonoid, a De Morgan bisemigroup and a bigroup.

A bisemigroup is an algebra Q(·, ◦) equipped with two binary asso-
ciative operations · and ◦. If both of these operations have an iden-
tity element, then the bisemigroup is called a bimonoid. A commutative
bisemigroup is a bisemigroup in which both operations are commutative.
A bisemilattice is a commutative bisemigroup in which both operations
are idempotent. In any bisemilattice Q(·, ◦), the binary operations deter-
mine two partial orders 61 and 62. A bisemilattice is called a bilattice,
if the partial orders 61 and 62 are lattice orders. Since every lattice or-
der is characterized by two binary operations, every bilattice is a binary
algebra with four operations and corresponding identities. A De Morgan
bisemigroup is an algebra Q(·, ◦,− , 0, 1) such that Q(·, ◦) is a bimonoid
with identity elements 0 (for operation ·), 1 (for the operation ◦) and such
that the identities

x = x,
x · y = x ◦ y,
x ◦ y = x · y,
x ◦ 0 = 0 ◦ x = 0,
x · 1 = 1 · x = 1

hold. A De Morgan bisemigroup Q(·, ◦,− , 0, 1) is a De Morgan algebra if
Q(·, ◦) is a distributive lattice .

Let Q be an arbitrary non-empty set, let O
(n)
p Q be a set of all n-ary

operations on Q, and:

OpQ =
⋃
n

O(n)
p Q;

A bimonoid Q(·, ◦) with identity elements 0 (for operation ·) and 1 (for
operation ◦) is called a bigroup, if

x ◦ 0 = 0 ◦ x = 0,
x · 1 = 1 · x = 1,

and the following conditions are valid:
a) Q\{1} is a group with an identity element 0 under the multiplication ·;
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b) Q\{0} is a group with an identity element 1 under the multiplication ◦;
A bigroup of order > 3 is called non-trivial.

The set O
(2)
p Q of all binary operations on the set Q is a bimonoid

under the following operations:

f · g(x, y) = f(x, g(x, y)), (1)

f ◦ g(x, y) = f(g(x, y), y), (2)

in which the identity elements are the identical operations δ22 and δ12 ,where

δ12(x, y) = x, and δ22(x, y) = y for all x, y ∈ Q. Any subset S ⊆ O
(2)
p Q

which is closed under these two operations is called a bisemigroup of
operations (on the set Q). The bisemigroup of operations (on the set Q)
is called a bimonoid of operations (on the set Q) if it contains the identical
operations δ12 and δ22 .

The bimonoid S of operations (on the set Q) is a bigroup, if both of
the following conditions are valid:

c) S \
{
δ12
}

is a group with an identity element δ22 under the multipli-
cation (1) ;

d) S \
{
δ22
}

is a group with an identity element δ12 under the multipli-
cation (2) ;

Such bigroup is called a bigroup of operations (on the set Q).
We characterize bigroups of operations in the category of second order

algebras introduced in [4].
Acknowledgement. This research is supported by the State Committee
of Science of the Republic of Armenia, grant: 15T-1A258.
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The quasigroup Q(◦) is called a Belousov quasigroup,if the identities

x ◦ (x ◦ y) = y ◦ x,

(x ◦ y) ◦ y = x,

x ◦ (y ◦ x) = (y ◦ x) ◦ y

are valid. A non-trivial Belousov quasigroup is not a Stein quasigroup
and not commutative.

The set O
(2)
p Q of all binary operations on the set Q is a monoid under

the following operations:

f · g(x, y) = f(x, g(x, y)), (1)

f ◦ g(x, y) = f(g(x, y), y). (2)

Theorem 1. If Q(A) is a non-trivial Belousov quasigroup, then it is
idempotent and A · A = A∗, A · A∗ = A ◦ A∗, A ◦ A = δ12, A∗ · A∗ =
δ22 , A

∗ ◦ A∗ = A . So if Q(A) is a non-trivial Belousov quasigroup, then
the set {δ12 , δ22 , A,A∗, A · A∗ = A ◦ A∗} is a bigroup of operations (on the
set Q), where A∗(x, y) = A(y, x) for every x, y ∈ Q.

Theorem 2. In every Belousov quasigroup Q(◦) the identities (x ◦ y) ◦
(y ◦ x) = y, (x ◦ y) ◦ (x ◦ (y ◦ x)) = y ◦ x, (y ◦ x) ◦ (x ◦ (y ◦ x)) = x ◦ y are
valid. In a non-trivial Belousov quasigroup Q(◦), for any a 6= b in Q the
set {a, b, a ◦ b, b ◦ a, a ◦ (b ◦ a)} is a five-element subquasigroup, which is
isomorphic to the five-element quasigroup with the following multiplication
table:

0 1 2 3 4
0 0 2 4 1 3
1 4 1 3 0 2
2 3 0 2 4 1
3 2 4 1 3 0
4 1 3 0 2 4
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If we take such subquasigroups as blocks, we obtain a block design on
the set Q.

It follows from the Theorem 2 that the non-trivial Belousov quasi-
group has at least five elements. The variety of Belousov quasigroups
is called a Belousov variety,which is a subvariety of the Mikado variety
([1]). Hence, the Belousov variety has a solvable word problem and is
congruence-permutable. Every Belousov quasigroup of prime order is a
simple algebra.

The applications of similar quasigroups in cellular automata see in [2].
To solution of the following problem is open.
To which loops are Belousov quasigroups isotopic?

Acknowledgement. This research is supported by the State Committee
of Science of the Republic of Armenia, grant: 10-3/1-41.
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Let Rn (n ≥ 2) be the n-dimensional Euclidean space, D ⊂ Rn be a
bounded convex body. Random k-flats in Rn, 1 ≤ k ≤ n − 1 generate
cross sections of random size in convex body D. As D is a convex body,
then obviously intersections of k-flats with D are always connected sub-
sets of Rn for every k ∈ {1, . . . , n − 1}. It is natural to require that the
corresponding distribution of random size of cross sections to be invariant
with respect to the group of all Euclidean motions in Rn. The deter-
mination of the distribution of size of cross sections has a long tradition
of application to collections of bounded convex bodies forming structures
in metal and crystallography. However, calculations of geometrical char-
acteristics of random cross sections is often a difficult task. In a special
case k = 1 we call the corresponding distribution function as the chord
length distribution function. For n = 2 the list of known results was ex-
panded after 2005 when N. G. Aharonyan and V. K. Ohanyan obtained
the explicit formula of the chord length distribution function for a regular
pentagon (see [1]).

Proposition 1. . Let D be a convex planar polygon which has m pairs of
parallel sides (ai1 , aj1),. . . ,(aim , ajm). The distances of the parallel lines
which carry these segments are d1,. . . ,dm, respectively, and πaik ∩ πajk
denotes the length of the intersection of the orthogonal projections of both
segments onto one of the carrying lines, k = 1, . . . ,m. Then for k ∈
{1, . . . ,m} for which πaik ∩ πajk > 0, the chord length density function
has a discontinuity at dk, and the limit from above at dk is infinite.

A computer program is created which gives values of a chord length
distribution function in the case of a regular n-gon for every natural n ≥ 3.
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Abstract. This work is dedicated to minimizing the sequence of transi-
tions of Petri nets using the reachable tree. The reachable tree is retrieved,
corresponding to Petri Nets. Then the infinite reachable tree is replaced
with ”finite” tree, by introducing an item, which replaces the idea of
an infinite. There is algorithm description of the minimal sequence of
possible transitions. The designed algorithm gets the shortest possible
sequence for the net advance state, which brings the mentioned net state
into covering state.

There is theorem, which states that through the describing algorithm,
the number of transitions in covering state is in minimal.

Keywords: Petri Nets, reachable trees, transition, position, covering
condition.

Construction of discrete systems models need system components,
with its operations in the abstract, such as, the program operator ac-
tion, trigger transition from one state to another, interruptions in the
operating system, machine or conveyer action, project phase completion
etc. In general, the same system can operate differently in different con-
ditions, bringing a multitude of processes, which means operating not
deterministically. The real system operates in certain time, cases occur
in certain periods and last for certain time. In synchronic models of dis-
crete systems, the events are clearly associated with certain moments or
pauses, during which all the components make simultaneous change in the
system state, which is interpreted as a change in the system state. State
conditions change successively. Alongside, these large systems, modeling
approach has several drawbacks.
• First of all, the system must take into account all the components of its
overall condition of each change, so that model appears formidable.
• Second, in such an approach, information are disappeared between ca-
sual links in systems.
• Thirdly, the so-called asynchronous systems may occur uncertain events
at intervals of time.
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The above-mentioned types of models, including Petri Nets are called
asynchronous. Link replacements in time, with causal relationships, give
chance to more clearly describe the structural features of the system.

Therefore, it is natural that many systems are suitable as discrete
structures, consisting of two elements: the type of events and terms. The
cases and terms in Petri Nets are disjoint sets with each other, respec-
tively, called transitions and positions sets. Transitions are depicted in
a graphical representation of Petri Nets (vertical lines), and places, with
circles [1-3].

Conclusion.
The above mentioned studies and the proved theorem brings out several
important features of Petri Nets in optimization perspective, according
which, if Petri Nets are used in technical devices, then the idea of succes-
sion transition passages brings resources and saves time[4-6].
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Tomography and and its early history. Computerized tomography
is one of the most impressive scientific achievements of the XXth century.
It had a revolutionizing impact on the whole contemporary medical sci-
ence and now it is difficult to imagine a serious medical hospital without
a computerized tomograph. For its construction the physicists Allan Cor-
mac and Godfrey Haunsfield were awarded in 1979 by the Nobel Prize in
physiology and medical sciences.

Let us recall what is the computerized tomography. We all have passed
through the Roentgen or X-ray diagnostics (called otherwise fluorogra-
phy), say, of our breast. You are standing between the two vertical plates
one of which is the source of X-rays while another one is the detector. As
a result of such diagnostics you will obtain the two-dimensional projec-
tion of your breast on the detector plate, in other words its photo taken
in Roentgen rays. If we can get the similar projections in different space
directions then it would be possible to reconstruct with some accuracy
the inner structure of your body. Such a reconstruction method was well
known from the first half of XXth century and got the name of ”tomogra-
phy” (in Greek ”τoµoσ” means ”section”). However, this method could
be realized in full scale only after the arrival of computer era. (Precisely
by this reason the new reconstruction method is called the ”computerized
tomography”.)

To take the computerized tomogram the patient is placed into a toroidal
camera, surrounding the investigated part of his body. This camera con-
tains both the sources and detectors of X-rays. The data obtained in the
process of tomography characterize the decreasing of X-rays along a big set
of straight lines piercing the investigated body in different directions lying
in the plane of tomograph. If you want to get a 3-dimensional picture,
you should move the body with respect to the camera thus reconstructing
the body in different planes.

From mathematical point of view the reconstruction of one plane sec-
tion of the body reduces to the reconstruction of a function on the plane
from its integrals along all possible straight lines. This classical problem
was solved by Johann Radon in 1917. Let us describe the Radon’s so-
lution in more detail. For that we consider a transform, called now the
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Radon transform which associates with a function on the plane its inte-
grals along all straight lines. Since the set of lines on the plane depends of
two real parameters (the distance from the line to the origin and the angle
between the line and real axis) we can pose the problem of existence of an
inverse transform. Such inversion was found by Radon and it is given by
an integral transform with the kernel determined (in modern terms) by
some generalized function or distribution (later on we shall consider this
Radon’s formula in more detail).

For the sake of historical justice we should point out that before Radon
another classical reconstruction problem was posed and solved by Paul
Funk. Namely, suppose that we have an even function defined on the
sphere in 3-dimensional space. By even function we mean a function which
takes the same values in antipodal points of the sphere. The problem
solved by Funk is formulated like this: is it possible to reconstruct such
a function from its integrals along big circles (i.e. along equators of the
sphere)? This problem was posed by Herman Minkowski and solved by
him in principle with the help of decompositions into spherical functions
(Minkowski’s solution was published posthumously in the volume of his
selected papers in 1911). Later on in 1913 Paul Funk has found a more
elegant solution of this problem using the Abel’s integral transform. We
note in passing that we cannot get rid of the evenness condition of the
original function since in the case of an arbitrary function on the sphere
the Funk formula will not reproduce the original function. It gives the
function which values in the antipodal points of the sphere are equal to
the half sum of the values of the original function in these points (in
particular, in the case of an odd function taking the opposite values in
the antipodal points the Funk formula will produce the identical zero).

Mathematical meaning of Radon’s formula.
Several words on the sense of Radon’s formula from the point of view

of the theory of distributions. It is based on the formula of decomposition
of the delta-function in ”plane waves”. We recall that the plane wave in
the n-dimensional Euclidean space is determined by a hyperplane with the
normal ω so that its wave front at any given moment is given by the equa-
tion (ω, x) = const. The formula of decomposition of the n-dimensional
delta-function δ(x) in plane waves depends on the parity of the number
n and looks differently in even-dimensional and odd-dimensional vector
spaces. For odd n it is written as

δ(x) = cn

∫
Sn−1

δ(n−1)(ω, x)dω (1)

where cn is an explicit constant, depending only on the dimension of the
space, δ(n−1)(p) is the derivative of (n − 1)th order of the delta-function
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δ(p), taken for p = (ω, x), Sn−1 is the unit sphere, and dω is its area
element. For even n (in particular, in the case n = 2 we are interested in)
the decomposition formula has another form

δ(x) = dn

∫
Sn−1

dω

(ω, x)n
(2)

where dn is again some constant, depending only on the dimension of the
space. The kernel in this formula coincides with the regularization of the
distribution pλ, obtained by the analytic continuation of this function with
respect to the complex parameter λ from the domain Reλ ≥ 0, where it
is correctly defined, into the domain Reλ < 0. The kernel in the formula
(2) corresponds to the value of this distribution for p = (ω, x), λ = −n.
Note that the formula (1) is of local character opposite to the formula (2).

The Radon inversion formula is obtained by the convolution of the
the given function (equal to the Radon transform of the original function)
with formula (2) .

X-ray tomograph.
Let us return to the X-ray tomograph. It seems that the Radon inver-

sion formula resolves completely the problem of reconstruction of a given
function from its integrals along straight lines. And it is indeed so on
the level of theoretical mathematics. We have only to approximate the
integral in Radon’s formula by the discrete integral sum and everything
is done: with the help of such approximation for any given ε > 0 we can
reconstruct the original function from a discrete set of straight line with
the given precision ε.

However the situation in practice is not that simple. As we have seen
above, the kernel in the Radon inversion formula is a distribution which
means that the integral of a given function with this kernel converges only
in a weak sense. In practice it means that after the discretization such
a convergence may be lost. By this reason the Cormack algorithm, real-
ized in modern tomographs, is based on a completely different inversion
formula. Namely, to get this formula we first apply to a given function
the one-dimensional Fourier transform along the direction, normal to the
considered straight line being the argument of our function. As a result,
we obtain the two-dimensional Fourier transform which may be inversed
by the two-dimensional inverse Fourier transform. This transform was
extensively studied in the second half of XXth century. It can be realized
using well-established modern computer algorithms. However, one should
not think that we got rid of all our difficulties. The inversion of the Fourier
transform, as also the majority of inverse problems, is an ill-posed prob-
lems. And this results in many serious difficulties in the process of its
realization on computers. We shall not speak about these problems here
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but it is necessary to have them in mind. We note only that the high cost
of modern computerized tomographs is explained mostly not by the tech-
nological (hardwear) problems but rather by the incorporated non-trivial
algorithms (softwear) which constitute the main commercial secret.

The modern computerized tomographs can work in the real-time regime
and are characterized by the high precision discovering the slightest dif-
ferences in the density of the studied tissues (of order of fractions of a
percent). Such a precision is sufficient to distinguish even the small can-
cer tissues at the beginning stage of their development.

Curvilinear Radon transform and its applications.
However, there are practical situations when the application of com-

puterized tomography is not recommended because of the hardness of
X-ray radiation (for example, it cannot be used to analyze the state of
a pregnant woman). In such situations physicians prefer to use instead
of X-rays less hard ultrasound rays. In contrast with X-rays, spreading
along straight lines, the ultrasound waves propagate along the curved
trajectories.

The corresponding mathematical problem can be formulated in the
following way. Suppose that we have in the unit disk in the plane a
conformally flat metric of the form

ds2 = f(x, y)(dx2 + dy2).

We can assume that this metric is sufficiently good in the sense that
any two points on the unit circle are connected by a unique geodesic of
our metric. (One can suppose, for example, that the considered metric is
close to a flat one which guarantees the fulfillment of the above condition.)
Assume that we know the lengths `(ϕ,ψ) of all geodesics, connecting the
points on the circle with angle coordinates ϕ and ψ. We would like to
reconstruct the original metric, i.e. the function f(x, y), from these data.
Since both functions depend on two real parameters, we can expect that
this problem in principle can be solved. Indeed, it is proved that it is
well-posed and correct which means that it has a unique solution and this
solution depends continuously on the initial data. However, we do not
know any explicit formula for such a solution, similar to that of Radon.

Generalizing this problem, we can consider the curvilinear Radon
transform which associates with a given function in the disk its integrals
over geodesics of a given metric and try to find an inversion formula for
such transform. It is clear that the problem of ultrasound reconstruction is
a particular case of this inversion problem. Unfortunately, this inversion
problem still remains unsolved despite many efforts of mathematicians.
By this reason ultrasound tomographs use in the curvilinear case Radon’s
formula for the straight line case which implies, of course, the low precision
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of ultrasound tomographs compared to their X-ray prototypes. The im-
provement of precision of ultrasound tomographs depends directly on the
progress in the solution of the mathematical problem, formulated above.

The curvilinear Radon inversion problem is important not only in the
medicine but also, for example, in geology where it arises when using the
seismic methods of exploration of minerals. In the simplified form these
methods work as follows. Assume that somewhere under the surface of the
earth (mathematically, in the lower halfplane) we have an object (min-
eral) which we would like to localize. For that we arrange in different
points of the surface of the earth (mathematically, the real line) a series
of microexplosions. The neighboring seismic stations fix the seismic waves
coming from these explosions. The velocity of propagation of these waves
allows to calculate the lengths of geodesics of the metric characterizing the
object we are interested in. It remains only to solve the inversion prob-
lem for the arising curvilinear Radon transform in order to reconstruct
the metric and so localize the desired mineral. Hence, in this case the
progress in developing of seismic methods also depends on the solution of
the inversion problem for the curvilinear Radon transform.

There are still many unsolved mathematical problems related to to-
mography but we are sure that any progress in their solution will find
important practical applications.
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