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ARMENIAN MATHEMATICAL UNION ANNUAL SESSION 2015

Ternary hyperidentities of associativity
defined by the equality

((z,y,2),u,v) = (z,y, (2, u,v))
L.R. Abrahamyan

Artsakh State University, Artsakh
E-mail: liana_abrahamyan@mail.ru

Beginning at the 1960s, the following formula from a second-order lan-
guage with specialized quantifiers have been studied in various domains
of algebra and its applications:

VXl,...,vaxl,...,l‘n(Wl :VVQ)7 (1)

where w1, ws are terms (words) in the functional variables X1, ..., X;,, and
in the object variables z1,...,z,. This formula is called V(V)-identity or
hyperidentity. For simplicity the hyperidentity is written without the
quantifier prefix, i.e. as an equality: w; = ws. The number m is called
functional rank and the number n is called object rank of the given hy-
peridentity. A hyperidentity is said to hold (or satisfied) in an algebra
(Q; U) if the equality w; = wy is valid when every object variable and
every functional variable in it is replaced respectively by any arbitrary
element of Q and any operation of the corresponding arity from U (it is
assumed that such replacement is possible).

Theorem 1. Ifin a nontrivial invertible algebra a nontrivial hyperidentity
of associativity is satisfied, which is defined by the equality:

((xﬂ Y, Z)a ’U,,U) - (xvya (Zaua U))v

then every functional variable is repeated in it at least twice. There-
fore,each of such hyperidentities can only be of functional rank 2 and one
of the following types:

1.X(Y(z,y,2),u,v)) =Y (z,y, X(z,u,v)),
2.X(X(z,y,2),u,0)) =Y (2,9, Y (2,u,v)),
3.X(Y (x,y,2),u,v)) = X(z,y,Y (2,u,v)).

Then we obtain characterizations of the ternary invertible algebras
with these hyperidentities.
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Density function of the distance between
two random points in a convex set

N.G. Aharonyan

Yerevan State University, Armenia
E-mail: narine78@ysu.am

Let D be a bounded, convex domain in the Euclidean plane, with the

area ||DJ| and the perimeter |0D|. Let P; and P> be two points chosen at

random, independently and with uniform distribution in D. We are going

to find the density function of the distance p(Py, Py) between Py and Ps.

Firstly, we find the distribution function Fj,(x) of p(Pi, P»). By defi-
nition,

1
Fo@) = 1o / dP, P, (1)

{(P1,P2):p(Py,P2)<z}

where dP;, i = 1,2 is the Lebesgue measure in the plane R2.
From the expression of the area element in polar coordinates we have

APy dPy = rdP; dr dy, (2)

where ¢ is the angle between the line through the points P, P> and the
reference direction in the plane. If we leave r fixed, then dP; dy is the
kinematic density for the segment P P5 of length 7.

Using (2) we can rewrite (1) in the form:

1 xr
Fy() = HDIIQ/O r K(D, ) dr, 3)

where K (D, ) is the kinematic measure of all oriented segments of length
r that lie inside D. Therefore, we obtain a relationship between the
density function f,(x) of p(Py, P») and the kinematic measure K (D, r):

_zK(D,z)

Note that we can calculate the kinematic measure of all unoriented seg-
ments that lie inside D and then the result multiplied by 2.

As it is well-known (see [1], [2]), the solution of the problem on find-
ing the kinematic measure K(D,r) of segments with constant length r,
contained in D, is not simple and essentially depends on the form of D.
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Explicit expressions for K (D, r) are known only in two cases (see [1], [6])
in a disc and a rectangle.

In the paper [3], a formula for the kinematic measure K (D, ) of sets
of segments with constant length r entirely contained in D is obtained.

fo(x) = ||DH2 272 ||D|| - 2x2|8D|—|—2x\8D|/ Fo(u du}, (5)

where Fp(-) is the chord length distribution function for the domain D.
The obtained formula permits to calculate the mentioned kinematic mea-
sure K(D,r) by means of the chord length distribution function of D.
Therefore if we know the explicit form of the chord length distribution
function for a domain, using (5) we can calculate density function f,(z)
of the distance between two random points in D. In [5] the explicit form
of the chord length distribution function is given for any regular polygon.
Consequently, density f,(z) can be calculated for any regular polygon by
applying the result of [5] (see also [4]) and formula (5).
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On properties of the spectral data of
Sturm-Liouville boundary-value problems

Yu. Ashrafyan

Yerevan State University, Armenia
E-mail: yuriashrafyan@ysu.am

Introduction. We consider the Sturm-Liouville operator

d2
with boundary conditions
y'(0) + y(0) cot e = 0, (2)
y'(m) + y(m) cot 8 =0, (3)

where «, 8 € (0,7) and ¢ is a real-valued functions which is integrable
on [0, 7] (we write ¢ € L[0,7]). By L(q, a, 3) we denote the self-adjoint
operator, generated by problem (1)-(3). It is known, that under these
conditions the spectra of the operator L(g,«, ) is discrete and consists
of real, simple eigenvalues, which we denote by u, = un(q,a,8), n =
0,1,2,..., emphasizing the dependence of u, on ¢, a and f.

Let o(z, p, o, q) and 9(x, u, 8, q) be the solutions of the operator (1),
which satisfy the initial conditions

@(Ovﬂvaaq) =1, w/(O,u,a,q) = —cot «,
7/’(“#%5#1) = 17 1/)/(71',#,5,(]) = —cot /8,

respectively.

It is easy to see that the functions ¢, (z) := p(z, n, o, q) and ¥, () :=
(&, in, B,q), n =0,1,2,... are the eigenfunctions, corresponding to the
eigenvalue .

The squares of the L2-norm of these eigenfunctions divided by sin® a
and sin’ § respectively:

7r 2
an:an(q,a,ﬂ)::/ Mdm, n=0,1,2,...,
o sin®a«

w 2
by, = bn(q, a, B) ::/ Mdm, n=20,1,2,...
o sin“pf
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are called norming constants.

The inverse problem by “spectral function” is the reconstruction of the
problem L(q,a, ) from the spectra {p,}52, and the norming constants
{an}22y (or {bn}52 ). The two sequences {un 152 and {a, 152, together
will be called the spectral data. Necessary and sufficient conditions for two
sequences {pn o2, and {a,}>2, to be the spectral data for some Sturm-
Liouville problem are well known. In this thesis we state the question:

what kind of sequences {u,}22, and {a,}>2, should be to become
the spectral data for problem L(g,«, ) with ¢ € L2[0, 7] and in advance
fixed o« and S in (0,7)?

Our answer is in the following assertions.

Theorem 1. Let g € L2[0,7] and o, B € (0,7). Then for norming con-
stants a, = an(q, a, B) and b, = b, (q, @, B) satisfy

1 1 /1 2
w w2 (5, = 7) = ot W
1 1 /1 2

Theorem 2. For a real increasing sequence {pn }oro and a positive sequence
{an}52q to be spectral data for an operator L(q, o, 3) with a ¢ € LE[0,7] and
fized o, B € (0, 7) it is necessary and sufficient that the following relations hold:

Vi =n+ % + w—;, w = const, {wn}olo €l (6)
an =3+ {m}io€l’, (7)
I 1 /1 2
CTO_;_|_nzl(a—;):cotoz, ®)
1
N RRTET

> annt 2

+n2::1 (WQ[MO - Hn]g(ﬁlzo:m#n ”kl;‘un)Q B ;) T (9)
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The weighted Dirichlet spaces of holomorphic or harmonic functions on
the complex plane are well studied, for example, the monograph [1]. We
define and study some analogues of weighted Dirichlet spaces for mono-
genic functions with values in the reduced quaternions, see [2]. The scale
of weighted Dirichlet spaces somewhat differs from that of classical ones.
Some sharp inclusions are established for monogenic and harmonic Dirich-
let spaces. Corresponding counter-examples are given.
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Introduction. This paper is devoted to research on Noethericity and the
invariance of the index of semi-elliptic operator on the scale of anisotropic
spaces.

Noethericity (see [1]) in smooth compact manifolds is proven for elliptic
operators [2], formula is obtained for the index in topological terms [3]. In
[2], as a consequence, the invariance of the index on the scale of Sobolev
spaces defined on compact manifolds is obtained.

For semi-elliptic operators previously were obtained following main re-
sults. The class of semi-elliptic operators with constant coefficients in R™
is described [4], Noethericity is proven for one class of semi-elliptic oper-
ators with variable coefficients in weighted Sobolev spaces [5].

Let
P(z,D) = Z aq(x)D%,

(a:v)<s

where a,v € Z%,v # 0, (a : v) = %+"'+%:7 s € N, D* =
D{*..D&n, Dy, = i%,x = (z1,...,xn) € R", n > 2, a,(x) are in-
finitely differentiable and bounded together with all derivatives.

By Ps(x, D) denote principal part of differential expression P(x, D) and
let o5 (z,€) be the symbol of principal part.

For k € R,v € Z", let H¥(R™) denote

a(€)1P(1+[€l)?*d€)V? < oo},

HE(R") ={ue 8" : |lullen(R") =([q.

where €], = (3201, |&[*)/2, S is the space of generalized functions of
slow growth, 4 is Fourier transform of w.

Let Q C R" be some domain. Denote by H¥ (Q) completion of C5° (Q)
with the norm of H* (R™) .

Definition 1. We say that P (z, D) is semi-elliptic at © = xq, if

Os (:L‘Oa 5) #O,VfERn7 ‘f' 7&0

Definition 2. We say that P (x, D) is uniformly semi-elliptic, if there
exists a positive constant C, such that
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0 (2, €)| =C €}, Vae R, Ve R,
We will use following notations for P (z, D):

A(P)= maz sup |as (x) —aq (0)],6 = inf |os(0,)].
(:v)=sgeRn €5 =1

In this work following theorem on the sufficient condition for the invari-
ance of the index and Noethericity preserving is proved:

Theorem 1. Let P (x, D) : H¥* (R") — HE (R™) be semi-elliptic oper-
ator at x = 0, kg is some fized positive number and there exists a positive
number gq, depending on ko HD 0, such that A (P) < &g . Then for arbi-
trary k1 HD ko, such that ki, ko€ [0, ko] and k1 < ko following applies:

if P(z,D) : H\%s (RY) — HEF (R™) is Noetherian, then P (x,D) :
HE2+s (R™) — HF2 (R™) is also Noetherian and indy, (P) = indy, (P).

For uniformly semi-elliptic operator the following is proved:

Theorem 2. Let P(x,D) : HETS(Q) — HY(Q) be uniformly semi-
elliptic operator. If the operator P (z,D) : H¥*5(Q) — H* (Q) is
Noetherian for some value ky, then P (x,D) : HETS(Q) — HF(Q) is
Noetherian for any k, and indy, (P) does not depend on k.
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Terminology and notations not described below follows [1]. We consider
finite digraphs without loops and multiple arcs. Every cycle and path is
assumed simple and directed.

Let D (G) be a directed graph D (an undirected graph G) of order
n and let S be a nonempty subset of D (G).The subset S is said to
be cyclable in D (in G) if D (if G) contains a directed cycle (undirected
cycle) through all the vertices of S. We say that a digraph D is S-strongly
connected if for any pair x,y of distinct vertices of S there exists a path
from x to y and a path from y to  in D. A Meyniel set M is a subset
of vertices of D such that d(z) + d(y) > 2n — 1 for every pair of distinct
vertices x, y in M which are nonadjacent in D.
There are many well-known conditions which guarantee the cyclability of
a set of vertices in an undirected graph. Most of them can be seen as
restrictions of Hamiltonian conditions to the considered set of vertices (
[2],[3] and [4]). For general directed graphs (digraphs) there are not in
literature as many conditions as for undirected graphs that guarantee the
existence of a directed cycle with given properties (in particular, sufficient
conditions for the existence of a Hamiltonian cycles in a digraphs). The
more general and classical ones is Meyniel’s theorem.
Theorem A (Meyniel [6]). Let D be a strongly connected digraph of or-
der n > 2 and d(x) 4+ d(y) > 2n — 1 for all pairs of nonadjacent vertices
in D. Then D is Hamiltonian.

Recall that Meyniel’s theorem is a common generalization of well-
known classical theorems of Ghouila-Houri and Woodall (e.g., see [1]).
Sufficient conditions for cyclability in digraphs with the condition of
Meyniel’s theorem was given by Berman and Liu [2] and by H. Li, Flandrin
and Shu [4].
Theorem B (Berman and Liu [2]). Let D be a strongly connected digraph
of order n. Then every Meyniel set M lies in a directed cycle.

Theorem C (H. Li, Flandrin and Shu [2]). Let D be a digraph of order
n and M be a Meyniel set in D. If D is M-strongly connected, then D
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contains a cycle through all the vertices of M.

Theorem C is generalize Theorem B. Theorems B and C also is a
common generalization of theorems of Ghouila-Houri and Woodall.

Let D be a digraph of order n. Following [5], we say that a nonempty
subset Y of vertices of D satisfies condition Ag if for every triple of the
vertices x,y, z in Y such that x and y are nonadjacent: If there is no arc
from z to z, then d(x) +d(y) + d*(z) +d~(z) > 3n — 2. If there is no arc
from z to z, then d(z) + d(y) + d~ (z) + d*(z) > 3n — 2.

Manoussakis [5] proved the following sufficient condition for hamiltonicity
of digraphs.

Theorem D (Manoussakis [5]). Let D be a strongly connected digraph D
of order n > 4. If the vertex set of D satisfies the condition Ay, then D
is Hamiltonian.

H. Li, Flandrin and Shu [4] was put a question to know if this theorem
of Manoussakis has a cyclable version. We prove the following theorem
which gives a answer for above-mentioned question of H. Li, Flandrin and
Shu and is best possible in some sens.

Theorem . Let D be a digraph of order n and let Y be a nonempty subset
of vertices of D. Suppose that D is Y -strongly connected and the subset
Y satisfies condition Ayg. Then D contains a cycle through all the vertices
of Y may be except one.
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Introduction. Fuzzy approaches to various universal algebraic concepts
started with Rosenfeld’s fuzzy groups [1]. Since then, many fuzzy alge-
braic structures have been studied (vector spaces, rings, etc.). Another
fuzzy approach to universal algebras was initiated by Beélohl avek and Vy-
chodil [2], who studied the so-called algebras with fuzzy equalities and
developed a fuzzy equational logic. The problem of development of alge-
bras with fuzzy operations is formulated in ([2], P: 136).

F-Algebras. In our talk we will use complete residuated lattices L =
(L,A,V,0,1) as the structures of truth values. An L-fuzzy set of X is a
mapping g : X — L and the set of all L-fuzzy sets of X is denoted by
LX. An n-ary L-relation of X is a mapping r : X™ — L.

Definition 1. An L — equivalence (fuzzy equivalence) relation E on a
set X is a mapping E : X x X — L satisfying

1. E(z,x) =1 (Reflexivity),
2. E(z,y) = E(y,x) (Symmetry),
3. E(x,y) ® E(y,2) < E(z,2) (Transitivity),

for every x,y,z € X. An L — equivalence E on X where E(x,y) =
1 implies x = y will be called an L — equality (fuzzy equality). L —
equalities will usually be denoted by =.

Definition 2. Let =M be a fuzzy equality on M. An (n+1)-ary fuzzy
relation v on a set M is called an n-ary fuzzy operation w.r.t. ~™ and
~M” if we have the following conditions

Eaxtensionality:

M )@y =My )@rpy) <r@.y) Vpp € M", Vy,y' € M,
Functionality:

r(py)@r(py) <y=™y VpeM" Vyy €M,
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Fully- defined:

\/ T(pay) =1 Vp € Mn,
yeM

where (ay, - ,an) ™" (by, -+, by) = N1y (a;=Mb;). We say that p is
a fuzzy operation on M with arity n.

Definition 3. An algebra (structure) with fuzzy operations of type T =
(=, R), (consisting a binary relation symbol = is called a symbol for fuzzy
equality and o set R of symbols of operations, and ~¢ R), is a triplet
M = (M, ~M  RM) such that

1. ~M s a fuzzy equality on the set M,
2. RM is a set of fuzzy operations on the set M.

Definition 4. Let I be an index set and F a filter on I. A reduced
product of a family {M; | i € I} of algebras with fuzzy operations M; =
(M, ~™Mi RM:Y of type (=, R) is an algebras with fuzzy operations

= <H M;, znieIM%7RHieIMi> (1)
i€l

el

such that for every (n + 1)-ary fuzzy relation rllicr Mi ¢ RILicr M gpd
ai, - ,an,y € [[,c; M; we have

e M; (al7 Cee Oy, y) = \/ /\ TMi (al(i), ety Ay, (Z),y(l))v

XeFieX

r

and

(a ol licr Mi b \/ /\ Mlb

XeFieX

for all a,b € [],c; Mi. (a(i) is the i-th coordinate of a).

i€l

If F = {1}, we obtain the direct product of F-algebras.

In our talk we will present some properties of direct products and
reduced products of F-algebras.
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Let R™ be the Euclidean space with points © = (z1,z2,...,2,), 7 =

n
(r1,79,...,7,) a vector with positive components, - = % YL and A =
1

9 * .
T T

(A, A2, ..., A\n), where \; = :—:, j=12,...,n By p(z) we denote the
function, positive for x # 0, defined implicitly by the equality

n

2 -2\ _
E Tip” =1
i=1

It is natural (see [4]) to denote the completion of C§°(R™) in the norm
171 == (o ©re©)| . 1<p <o

by the simbol 1, (see also [1] and [2]) and called space with quasihomo-
geneous norm, or space of anisotropic potentials.

Ifr* < %, then 1, is the spase of functions representable with anisotropic
potentials. When r* > % the spase w,, is no longer a function space; its
elements are classes in which functions that differ by a corresponding
polynomial are identified (see [3], [4]).

When ry =rg = =1, =0 we set wy, = L,(R"™). The space w, "
is defined as the dual of ;. Suppose also that w2288 = ubf,s’s, and
wy, 4 through the subspace of w;, consisting of factor-classes containing a
distribution with support in the Rfﬁ ={(x1,22,...,2n_1), t = 0}.

Heat operator denoted by

0
T = _Aa; YR
o
where A, is the Laplasian applied to the variables x1,x2,...,2p_1. As

. 28,8 . 2(s—k ,S*k}
Tk wae w ( )

is an isomorphism. A special property of T operators is that their sym-
bols can be analitically continued to the last variable in the lower half-
plane. This allows us to prove the following

. . . . 2k, k
Theorem. T* operator is an isomorphism from iy o to Loy
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distributions and maximal chords
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Let R™(n > 2) be the n-dimensional Euclidean space, D C R™ be a
bounded convex body with inner points, S*~! be the (n — 1)-dimensional
sphere of radius 1 centered at the origin and V,, be n-dimensional Lebesgue
measure. We consider a random line which is parallel to v € S*~! and
intersects D, that is an element from:

Q1 (u) = {lines which are parallel to u and intersect D}.

Let IIr, . D be the orthogonal projection of D on the hyperplane u*(ut
is the hyperplane with normal w and passing through the origin). A
random line which is parallel to v and intersects D has an intersection
point (denote by z) with IIr,. D. We can identify the points of IIr,. D
and the lines which intersect D and are parallel to u. The last means, that
we can identify ;(u) and Ir,. D. Assuming that the intersection point
z is uniformly distributed over the convex body Ilr, . D we can define the
following distribution function: The function

Vo—1{z € IIr,. D : Vi(g9(u,x) N D) < )}

F(u,t) = bo ()

is called orientation-dependent chord length distribution function of D in
direction u at point ¢ € R, where g(u, x) - is the line which is parallel to
u and intersects IIr,, . D at point x and bp (u) = V,,—1(IIr,. D).

The orientation-dependent chord length distribution function of a triangle
and an ellipse depends on maximal chord ¢,,q.(u) in direction u (see [1]
and [2]). A natural question arises, in which cases does it exist a func-
tion G(x,y) of two variables such that F(u,t) = G(tmaz(u),t). In [3] a
necessary condition for orientation-dependent chord length distribution
function as a function of maximal chord is obtained. A class of parallelo-
grams for which the necessary condition is not satisfied is also constructed
(see [3]).
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Investigations concerning to the theory of random processes for the case
when so-called ”usual” conditions on a stochastic basis doesn‘t satisfies,
go back to the works of J.L.. Doob, P.A. Meyer, C. Dellacherie and many
others. The strong martingales in [9], A-martingales in [8] and optional
martingales in [1, 2] have been introduced and the stochastic calcula-
tion by such martingales have been constructed then. In difference from
the classical theory of random processes with "usual” assumptions on a
stochastic basis, where considering martingales are cadlag - processes, the
martingales entered above are laglad processes, i.e. the processes with the
paths admitting both one-sided finite limits at the each point ¢ > 0. Sub-
sequently the weak convergence of distributions for optional semimartin-
gales and the Central Limit Theorems have been received in [4]. The Limit
Theorems together with earlier obtained Strong Laws of Large Numbers
for optional martingales were used in statistical applications in [3, 5].

Interest for the theory of random processes without ”usual” assump-
tions on a stochastic basis and, in particular, to its applications in Stochas-
tic Finance was shown recently again (see e.g. [7, 6, 10]).
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Curve fitting is the process of constructing a curve, that has the best
fit to a series of data points. Curve fitting can involve either interpola-
tion, where an exact fit to the data is required, or smoothing, in which a
”smooth” function is constructed that approximately fits the data. The
oldest data fitting algorithm is the Lagrange interpolation formula. For
the given data set M = {(xk.yx)},_o, where no two x; are the same
find the polynomial of the least degree that at each xj assumes the cor-
responding value yi. This problem is always solvable and the solution is
unique. Start by the product

w() =[] (@ -

and introduce the Lagrange fundamental polynomials

w ()

(x — zp) W' (k)

lk (l’) =

Finally, the interpolating polynomial is defined by the formula
P(x) =l (x).
k=0

Conceived to serve as a tool in the investigation of functions, inter-
polation polynomials suffer two serious flaws. The first is the polynomial
wiggle, i.e. increasing the degree of the polynomial makes the oscillations
very large. Famous Runge’s example shows that for the function

1
=—— _ =z
1+ 22’

f(z) € [-5; 5]
the interpolation polynomials constructed by the equidistant nodes tend
to infinity in the uniform norm, when the number of nodes grows in-

finitely. Moreover, for any choice of nodes there exists a function, such
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that the error (the norm of the difference between the function and the
interpolation polynomial) tends to infinity.

For the same knots another interpolation formula may be obtained,
introducing Hermite-Fejer basic polynomials

W” (-rk')

w' (k)

hy, (x) = (1 - (x— xk)) li ().

According to Fejer’s theorem the Hermite-Fejer interpolating polyno-
mials, constructed by the nodes, consisting of zeros of the Chebyshev
polynomials of the first kind tend to any continuous on [—1; 1] function f.

For interpolation by splines usually are used cubic polynomials, dif-
ferent for each pair of neighbouring nodes, regularized such that at each
node the resulting function and its derivatives up to the order two are con-
tinuous. All these conditions lead to a diagonally dominated tridiagonal
system of linear equations, which is uniquely solvable.

The smoothing idea is implemented in the Bernstein polynomials. The
general case of arbitrary interval [a; b] is reduced to [0; 1] and set of weights
(Bernstein basis polynomials)

b (1) = CF* (1= )"t € 0 1]

are introduced. For any continuous on [0;1] function f the sequence of
Bernstein polynomials

B.(f1) = kiof (£)ne

converges uniformly on [0; 1] to f.

We propose a general approach to these problems, including as partic-
ular cases the above mentioned interpolation and smoothing algorithms,
as well the Bezier curves.
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Introduction. A large class of elementary atomic-molecular and nuclear
processes can be described in the framework of representations the three
and four-body (a few-body). Let us note that a few-body problems, both
classical and quantum, are generally non-integrable systems and respec-
tively the main method of their studies is the numerical simulation. For
applied problems it is often important to know probabilities and cross-
sections elementary reactions over a wide range of initial parameters, that
implies the large-scale calculations, the development of new more effective
algorithms always remains an important challenge. On the assumption of
the previously mentioned it becomes apparent, that the reduction of di-
mensionality of the dynamical problem is a very important problem. If we
talk about the classical three-body problem then as it is well-known, the
general problem in the phase space is described by the 8th ordinary dif-
ferential equations of first order (the system of 8th order). Note, that this
system of nonlinear equations is rather complex and its numerical simula-
tion from itself represents non-trivial problem. The calculations especially
become complicated when we want to solve the three-body collision prob-
lem with consideration of the multichannel scattering (see scheme below);

A+ (BO),
C + (AB),
B+ (AC),
A+B+C,
A+ (BC) — C 4 (AB)
. B+ (AC),
(ABC)" — A+Jé+)c
(ABC)*,

where A, B, and C denote colliding particles, (ABC)* and (ABC)** re-
spectively denote transient (resonant) complexes which are forming in
result of three-body collision.

We have proved that the general three-body problem may be formu-
lated as the problem of geodesic flows on the 6D manifold; M = M;® 53,
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where M, denotes tangent bundle (the 3D hypersurface of an energy
which is defined by diagonal matrix g;;({z}) = (E — U({z}))d;; where
{z} the set of three coordinates, E and U({xz}) respectively the total en-
ergy and interaction potential of the body-system), SO(3) is the space of
the rotation group. This allows to find a new type symmetry and to im-
plement more complete integration of system in result of which the initial
problem is reduced to the system of the 6th order [1]. It is important to
note, that on the way to the proof of reduction of three-body dynami-
cal system to the system of 6th order, the Poincare conjecture about of
homeomorphism between a closed 3D manifold and the standard sphere
53 is proved. As it is shown, the dynamical system that arises in result of
reducing the initial three-body problem is described with the help of ex-
act Hamiltonian. The last allows developing the symplectic algorithm for
a numerical simulation of considered problem. Finally, the multichannel
chemical and nuclear reactions often pass via of formation of transition
complex (see the scheme), that makes behavior of geodesic flows on curved
space similar to phenomena of turbulence in fluids. This obviously gives
us a good opportunity to use already well-established, high-performance
program-package from the field of modeling turbulence.
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Introduction. Not so long ago, the famous physicist Stephen Hawking
in his ”millennium” interview (San Jose Mercury News, January 23, 2000)
said, ”I think the next century will be the century of complexity. As we
now see his prediction turned out to be prophetic. Up to now there is no
clear definition of what complexity means. However, a characterization of
what can be regarded as a complex is possible. In a number of scientific
fields, ”complexity” has a precise meaning. Furthermore, in a number of
scientific fields, ”complexity” has a precise meaning. In particular it con-
cerns to the field of computational complexity theory where the amounts
of resources required for the execution of algorithms is studied rigorously.
The most popular types of computational complexity are classified by
complexity classes P and NP. Recall that the P class includes problems
that can be solved in polynomial time on the Turing machine, whereas
the class of NP problems on the same machine is impossible to solve in
a polynomial time. In regard of this arises an important open problem,
namely, the problem of equivalence of classes NP and P.

In the present work we continue study on problem of computational
complexity of spin-glasses [1]. In particular we have studied the classical
1D Heisenberg spin glasses assuming that spins are spatial. The sys-
tem of recurrence equations are derived by minimization of the nearest-
neighboring Hamiltonian in nodes of 1D lattice. It is proved, that there is
probability that in each node of lattice the solution of recurrence equations
can bifurcate. In result of this, performing a consecutive node-by-node
calculations, on the n-th step instead of a single stable spin-chain we
receive a set of spin-chains which form Fibonacci subtree (graph). The-
oretically the complexity of computation of one graph is assessed, it is
equal o 2"K,, where n and K denote the subtree’s height (the length
of spin-chain) and Kolmogorov’s complexity of a string (the branch of
subtree) respectively. It is shown that the statistical ensemble may be
represented as a set of a random graphs, where the computational com-
plexity of each of them is NP hard. It is proved that all strings of the

33



ensemble have same weights. That allows, in the limit of statistical equi-
librium with predetermined accuracy to reduce NP hard problem to the P
problem with complexity o N K, where N is the number of spin-chains
in the ensemble. As it is shown by comparing of statistical distributions
of different parameters which are performed by using of NP and P algo-
rithms, the coincidence of the corresponding curves is ideally (see Fig. 1).
The latter allows to claim that all parameters and characteristic distribu-
tions of statistical ensemble can be calculated from the first principles of
classical mechanics without using any additional considerations.
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Figure 1: The distributions of the energy and coupling constants (spin-spin
interaction constants) into the statistically equilibrium ensemble consisting
of spin-chains of the length 20.The black curves denote the distributions
which have calculated by P algorithm, while whites are calculated by N P
algorithm.

Finally, for the partition function we propose a new representation in
the form of one dimensional integral by the energy distribution of spin-
chains. Let us note that this representation for the partition function
does not include contributions of spin-chains configurations which does
not satisfy to the first principles of classical mechanics.
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We say that the differential operator Ry (D) (the polynomial Ry (&) ) with
constant coefficients is more powerful than the differential operator
Ro(D) (the polynomial Ry(£) ) and write Ry < Ry if for some constant
C>0 [Ro(6)] < C IRy (E)41] forall€ € B™. T |Ry(€)]/[|R (€ +1] = 0
as |{] — oo we write Ry << Rj.

Let P(x,D) = > 7va(x) D* be a linear differential operator with co-

efficients, difined on E™ and P(z,£) = > va(x) £ be its characteristic

polynomial ( complite symbol), where for each z € E™ the sum extends
over a finite collection of multi - indices (P, z) = {& € NJ';vo(z) # 0}.

An operator P(z,D) ( a polynomial P(z,£)) we call formally al-
most hypoelliptic in E™, if 1) P(z, D) have constant power in E"
(see [1] or [2]), i.e. if P(zt,&) < P(2?,€) for arbitrary fixed z!,2% € E"
and 2) operator P(x°, D) with constant coefficients is almost hypoel-
liptic for any 2° € E", i.e. DYP(2°, D) < P(2%, D) for all v € N

Let I,, denote the set of polynomials R(§) = R(&q, ..., §n) with constant
coefficients such that |R(£)| — oo as || — oo. In [3] it has founded some
conditions under which an almost hypoelliptic polynomial R € I,,.

Denote by A = A(E™) a class of operators P(z, D) with coefficients in
C* and with constant power in E™, satisfying conditions: there exists a
point 2° € E™ such that operator P(z, D) represents in form

P(z,D) = Py(D) + Z a;(x)P;(D), (1)

where Py(D) = P(z°,D) and 1) aj € C® (j = 1,...,1), 2) Py € I,, and
P << Py (j=1,...,7), 3) for any v € N§ there exists a number ¢, > 0
such that |[DVa;(z)| < ¢, (j = 1,...,r) for all z € E™, 4) there exists a
number ¢ > 0 such that |[§] < ¢[|Py(§)| + 1] for all £ € R™.

It is easily to seen that a) any operator P € A is formally almost
hypoelliptic, b) for each point 2° € E™ any operator P with constant
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power represents in form P(z, D) = Py(D) + > a;j(z)P;(D) (note that
§=0

in representacion (1) ag(z) = 0), where Py(D) = P(2°, D) and the coef-
ficients {a;(z) = a;(z,2°)} are uniquely determined, vanish at z°, have
the same differentiability properties as the coefficients of P(x, D) and
Py, Py, ..., P, is a basis in the finite dimensional vector space of opera-
tors with constant coefficients which are less powerful than Py(D) (for
operators with constant strength by L. Hormander see [ 4]), ¢) any non
- degenerate by V.P.Mikhailov operator P(z, D) with complite Newton
polyhedron R(P) = R(z, P) (see [5]) and some degenerate operators (see,
for instance, [2] ) satisfies the condition 4) of the class A.

Let g(z) be a weight function such that o~ le™*l < g(z) < ge~l#l
for a number o > 0 and gs(x) = g(d 2), ||ul|L, ; = {w;||lugs||L, < oo},
H(Po, 8) = {us|[ullicpys) = lullza. o + 1Po(D)l|1s , < o0}, D(P) =
{u e S P(z, D)u = 0}. We prove the following result

Theorem 1. Let P € A, then there exists a number A > 0 such that
D(P)NH(Py, §) C C* for any 6 € (0,A).
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The present paper is devoted to the study of balanced {2, 3}-hyperidentities
of the length of four in invertible algebras and {3}-hyperidentities of as-
sociativity in semigroups.

The following second order formula is called hyperidentity:

VXl,...,vaxl,...7I7l(W1 :VVQ)7 (1)

where Xi,...,X,, are the functional variables, and zi,...,z, are the
object variables in the words (terms) W7y, Ws. Usually, a hyperidentity is
specified without universal quantifiers of the prefix of the equality: W; =
Ws. According to the definition, the hyperidentity W, = W is said to be
satisfied in the algebra (@, X) if this equality holds when every functional
variable X; is replaced by any arbitrary operation of the corresponding
arity from ¥ and every object variable x; is replaced by any arbitrary
element from Q.

If the arities of the functional variables are: | X1| =n1,...,|Xm| = nm,
then the hyperidentity Wy = W is called {n1,...,n,, }-hyperidentity.

A hyperidentity is balanced if each object variable of the hyperidentity
occurs in both parts of the equality W7 = W5 only once. A balanced
hyperidentity is called first sort hyperidentity, if the object variables on
the left and right parts of the equality are ordered identically. The number
of the object variables in a balanced hyperidentity is called length of this
hyperidentity.

The algebra (Q,X) with the binary and ternary operations is called
{2,3}-algebra. A {2,3}-algebra is called non-trivial, if the sets of its
binary and ternary operations are not singleton.

The present paper aims at classifying of the balanced {2, 3}-hyperidentities
of length four in invertible algebras and the description of the invertible
algebras in which these hyperidentities hold, as well as at the description
of the semigroups that polynomially satisfy ternary associative hyperiden-
tities.

The following main results will be proved in the talk.

1. The balanced first sort {2, 3}-hyperidentities of length four in non-
trivial invertible algebras are classified;
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2. The invertible {2, 3}-algebras with a binary group operation and with
the balanced first sort {2,3}-hyperidentities of the length four are de-
scribed;

3. The invertible {2, 3}-algebras with ternary group operation and with
the balanced first sort {2, 3}-hyperidentities of length four are described;
4. The classes of the semigroups, which polynomially satisfy the associa-
tive {3}-hyperidentities are described.
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Introduction. We prove that if P(D) = P(D1,D2) = >, 7o D7 D5?
is almost hippoelliptic regular operator, then for enough small § > 0,
all solutions of equation P(D)u = 0 from Ly 5(R?) are entire analytical
functions.

Section 1. We use standard notations: N is the set of natural numbers;
No = NU{0}; NJ = Npx---x Ny is the set of n-dimensional multi-indices;
E™ and R"™ are n-dimensional real coordinate spaces © = (x1,...,2,) and
&= (&,...,&), respectively.

Let B = {a*} be finite set of points from N{. Minimal convex poly-
hedron it = R(B) C R} including B U {0} we call as characteristic poly-
hedron or the Newton polyhedron of set B. We call polyhedron R as
regular if & has vertex at the origin, vertices on each axes apart from the
origin, and all outer (relative to i) normals of (n — 1)-dimensional faces
of i have nonnegative coordinates. We call polyhedron R as completely
regular if all outer normals of such faces have only positive coordinates.

Let P(D) = > vaD® be linear differential operator with constant
coefficients and P(§) = > 72£* be the corresponding symbol (charac-
teristic polynomial), where summation is performed over the following
finite set of multi-indices (P) = {& € N[, v, # 0}.

Characteristic polyhedron R = R(P) of set (P) we call as characteristic
polyhedron of operator P(D) (polynomial P(£)).

Definition 1. [1, 2] Operator P(D) with polyhedron R = R(P) is called
reqular if there exists constant C > 0 such that

3 1€ < C(IPE)] +1), VE € R

aERNNG

Definition 2. [3] Operator P(D) (polynomial P(€)) is called almost hip-
poelliptic if there exists constant C' > 0 such that for any 8 € N§

IDP(&)| < C(IP(§)| +1), V€ R™.
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For 6 > 0 we put
N(P,6) = {u;u € Ly 5(E?), P(D)u = 0},
where
Ly s(E?) = {f; fe " € Ly(E?)}.
Let
Py(D) = Py(D1, D2) = Z Yo D1 D3*

aENg
is a regular operator with characteristic polyhedron
§):E(‘PO) = {V € Rivljl S mi, V2 S m2}a

where mi, ma € Ny. Obviously, ®(Fp) is a regular polyhedron.
We denote by Ag(FE?) the set of entire analytical functions of real
variables (z1,x2).

Theorem 1. For any compact set K C E? and for any function u €
N(Py,d) the following estimate is holds

sup |D%u(z)| < C1FL Vo e N2,
zeK

where C = C(K,u) is some constant and § > 0 is sufficiently small.

From here, we conclude that for sufficiently small § > 0 the following
holds

N(P()7(5) C Ap.

We prove also that for sufficiently small § > 0 and for any f € I'¢(E?),
a > 1 the following holds

N(P07f75) = {’U,,’LL : 6_6|$| S LZ(EQ)vp(D)u = f} - Fg(EQ)v
where

D4(E?) = {f; D] - el 5, < €l pelel),
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There are a few studies about multiple hypotheses, the overwhelming
majority of publications is dedicated to the case of two hypotheses [5].
Multiple hypotheses testing is an important area in statistical inference
with wide applications in many scientific and practical fields [2-4]. Many
of decisions in the real world are made in a fuzzy environment. Fuzzy
decision problems are studied following the theory founded by Zadeh[7-9].

There are many investications concerning decision problems, hypothe-
ses testing and Neyman-Pearson lemma involving uncertainty with appli-
cation of fuzzy set theory [6].

We presented generalization of the Neyman-Pearson lemma for more
than two hypotheses in conventional formulation in [1] and now state the
Lemma in terms of fuzzy statistics. For neccessary definitions of fuzzy
theory notions we refer to [6].

Theorem. Let X = (X1, ..., Xn) be a fuzzy-valued random sample with
observed values X = (T1,...,2n) and density f(Z,6), where § € O is a
parameter. For testing fuzzily formulated three hypotheses

Hy: 6 is Hy(9),
Hy: 6 is Hs(0),
Hs: 6 is Hs(0),
for preassigned positive numbers 77, T any test with fuzzy test function
P(X) =
1, if min ( H, (X)/Hs(X), Hy (X)/Hs(X) ) > Ty,
2, if min ( Hy(X)/H2(X), H1(X)/H3(X) ) < Ty ,min (ﬁg(i) /ff?,(g)) > T,
3, if min ( H, (X)/Hz (%), Hy(X)/Hs(X)) < T1 , min (ﬁg(i) /ﬁg(i)) <,

is optimal in the sense that it has error probabilities oy, I,m = 1,3,
and for each other test with the corresponding error probabilities S|,
I,m=1,3,

if By <aip, then By > aqp, or Bz > ays,
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and
if Bop < agp, then B3 > ags.
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Introduction. The Neyman-Pearson lemma [1] plays a central role in
the theory and practice of statistics. For the case of multiple hypotheses
it is considered in [2].

Here we discuss Neyman-Pearson hypotheses testing principle for a
model consisting of two independent objects. This model was proposed
by Ahlswede and Haroutunian [1]. The characteristics of the objects
are independent random variables (RVs) X; and X, taking values in
the same finite set X. So, considered model is described by the ran-
dom vector (X1, X3), which assumes values (z!,2%) € X x X. It is sup-
posed that two probability distributions G,, = {Gp,(2), v € X, m =1,2
are known and each object independently follows to one of them. So,
there are four hypothetical probability distributions G; o G;(zt,2?) =
{Gi(x")Gj(2?), (2',2%) € XxX}, 4,5 = 1,2, for random vector (X1, X»).

Let (x1,x2) = ((@l,2%),..., (xL,22), ..., (zk,2%)), =}, € X, i = 1,2,
n = 1, N, be a sequence of results of N independent observations of the
vector (X1, X2). It is necessary to detect unknown PDs of the pair of
objects on the base of observed data. The test can be defined by division
of the sample space XV x XN on 4 disjoint subsets nyj, i,7 =1,2. The
set vaj consists of all vectors (x1,x2) for which the hypothesis G; 0 G; is
adopted.

Let ALy g |my,ma = G'rjxl © G%2 (B{Y7lz)a (llvl2) 7& (m1;m2)7 livmi = 1727
i = 1,2 be the probability of the erroneous acceptance Gi, o Gi, by the
test provided that G,,, o G, is true. When a true distribution G,,, o
Gy, mi,mz = 1,2 is rejected the error probability is ap, myjmy,m. =

Z Ay lzlmy ma -
(I1,l2)#(m1,mz2)

Neyman-Pearson Testing for a Pair of Independent Objects.
We consider Neyman-Pearson testing for this model with two ap-
proaches: a) direct method and b) renumbering method. Our aim is
to compare the corresponding error probabilities of these two approaches
and find the best method.
a) Direct approach. Error probabilities of separate tests af | li,my =
1,2 and O‘?;\my lo, mo = 1,2 of the first and the second objects respectively
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can be obtained according to Neyman-Pearson lemma for given numbers
T! and T'!. For the model joint error probability will be ay)

* * . « lz|m1,m2 =
oy O, for I; # my, l;,m; = 1,2, i = 1,2 and o

[ [ma? lalmi,me —
al*i‘mi(l — O‘Z-\mj) for I; #my, I #myj, Li,m; =1,2,i#j,i=1,2.

b) Renumbering approach. We have to renumber pairs of hypotheses
and we have to apply Neyman-Pearson lemma for 4 hypotheses, which is

investigated in [2]. Hence, for given positive values T 111 A 91,2 and

04311'2’1 we can chose numbers 17, T3, T3 and sets A; j, 4,7 = 1,2.

Let us assume that we have found the error probabilities by direct
approach. By considering the renumbering approach we will find all other
error probabilities. In [2] it is proved that these error probabilities are
the smallest, hence we can insist that renumbering approach is not worse
that the direct one.

Conclusion. We conclude with some observations and directions for
future work. The analogical result can be obtained for the models for
which RVs X; and X5 have values from the different sets and there are
different lists of hypothetical probability distributions for the first and the
second objects. It is desirable to make calculations for practical examples
showing what is the complexity of realization for each of two considered
methods.
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1.Statement of problem.

Let {(X,,,Y,)}Y_; be a chronologically ordered two-dimensional random
sequence, statistical properties of which change in some unknown mo-
ment (change-point). We consider {(X,,Y;)})_;, as a random sample
of random vector (X,Y) with common distribution function F(z,y) and
continuous marginals Fx(z) and Fy (y). Then dependence between ran-
dom variables (RV’s) X and Y can be expressed in unique manner by
copula function C(u,v). Recall that copula of X and Y is defined by
relation

C(Fx(x), Fy (4)) = Flz.y).

We denote by C™ (u,v) copula of (X,,,Y;) and by ny = [AN] for A <
A<1T-A0<AKL % - change point. Our aim is to test hypotheses for
eachn =1,N

Hy : C(”)(u,v) = C(u,v)

under
Hy : C™ (u,0) = I{n < na}C1(u,v) + I{n > na}Ca(u, v)
where T{A} is indicator of the event A and
Cy(u,v) # Ca(u,v).
2. Change moment detection under some prior assumptions.

a) Prior information about possible distinctions between Cj(u,v) and
Cy(u,v) are absent. Nonparametric test for this case sugested in [1] is
based on the multivariate modification of Kolmogorov-Smirnov test statis-
tic.

b) The copulas C;(u,v) and Cy(u,v) belong to the same family of one-
parametric copulas and differ only in the parameter values, such as the
Farlie-Gumbel-Morgenstern families presented by Nelsen [2].

¢) The copulas C}(u,v) and Ca(u,v) belong to different one-parametric
families and differ both in the functional type and in parameter values.
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For cases b) and c) we suggested an algorithm that allows reducing
the detection of changes in copula function occuring in unknown change-
point ny to testing homogeneity of one RV, for instance Y, with respect
to another RV X [3].

The algorithm is based on rank tests statistics and is applied to anal-
ysis of real data in [4] and [5].

In the report model examples are given for the case b) when the sug-
gested method cannot be applied under some value of parameter A. In
the case ¢) the method can be applied provided the copula C(u,v) cor-
responds to a relatively weak dependence, while the copula Cs(u,v) ex-
presses a stronger dependence (the Frank copula, for example).
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Application of Sanov’s Theorem to Testing
of Random Variables Independence

E.A. Haroutounian, A.O. Yesayan

Institute for Informatics and Automation Problems of NAS, Armenia
E-mail: evhar@ipia.sci.am, armfrance@yahoo.fr

Introduction. In this paper we consider the classical hypotheses testing
problem of independence of two variables and more random variables with
getting exponential decay for error probability.

Problem statement. Let (X,Y) be the result of N independent obser-
vations or N-samples of random variables (RVs) (X,Y). If X and Y are
discrete, their possible values are x1,xs,...,xp and y1, 42, ...,y respec-
tively. Let np,; is the number of pairs (z,,,y;) in N-sample, for which
X=xnY=y,m=1M,1=1L If X and Y are continuous, the
domain of their values can be presented by intervals

[1,22), [X2,23), .0y [T, Ting1)s s [Tar—1, 207 ) and

[Y1,Y2); [Y2,Y3)s o5 [U1s Yis1)s o5 [YL—1, YL )- Then n,,; are frequencies of el-
ements , for which X and Y belong respectively to m-th and [-th intervals.
Based on this N sample we have to test hypotheses

Hy : X and Yare independent

against
H; : X and Yare dependent.

If Hy is true it follows that pmy = pm. X pg, m =1, M, l =1, L where

L M
N, ng
Pm. = W7 bi = W7 Nm. = E Nml, N = E Nl -
=1 m=1

The problem of testing of these hypotheses for given first type error prob-
ability « = P(H;/Hp) (wrong acceptance Hy when Hy is correct) can be
solved using Pearson x? chi-square test.

We calculate the observed value of x?

(TL 1 — N x P 1)2
Xibs = E = =
N X Pmi

m,l

and define critical region by the condition P(x* > x?2.; ) = a. From the
table of x? distribution we find x?2,,, (critical value of x2). If X%, < X2
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we accept Hy.

We get for large enough N exponential decrease of o using Sanov’s theo-
rem.

Sanov’s theorem [1]. Let P be the set of all probability distributions
and X1, Xo,..., Xn be identically independently distributed by distribu-
tion G, £ C P and & is the closure of its interior, then

lim log — GN< ) = —D(Q*||G)

N—>o00
where Q* = argmingeg D(Q||G) is the distribution in £ that is closest to

G in relative entropy.

Suppose £ is the set of joint distributions of RVs which are dependent.
So applying Sanov’s theorem we get

a~ exp{—ND(Q"|[pm. x p1)} = exp{—NI(X AY)},

where {Q*:%,mzl,M,l:LL}EE.

In general case we have hypotheses
Hy : The group of K RVs are independent

against
H; : The group of K RVs are dependent.

For simplifying notations we take three variables. Applying again Sanov’s
theorem we get a ~ exp{—ND(Q*||pm.. X p.i. X p.,r)} where empirical
distributions are used.
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Enypnpn upgh Ynptiph Yhquytiptiph wpnjtypy
npnodwl dwuh

U. L. SULNFE-8NFL3TL

o, Upnjubh wiub huyiuyjut yhpuwijud dwtjujupduud hadwuupub
E-mail: S_Haroutunian@netsys.am

EJyhntuywb hwppnipjub dte Ejhyuh, hhytippnih b yywpwpnih vwhdwinid-
otipnid oqupuugnpdymd E Gpym Yhptiph hbnwynpnipyut hwuljugnipyniap,
npp puguljuynmud Ewdhbwubd b ypnytyphy Gpypusathnipynibbtpnd: Ujna
Ynnihg, Gnybhuly EJyihnbujwd hwppmpub dte tpypnpn Yupgh gdtiph
nuuuupgmup §pmd £ wphbwud pbnyp: Wowowbmd E tpypnpn Jupgh
Unptiph wphtwyub b wybmhtiple ypnytiyyphy vwhdwbdwb pubnhp: Unyb
wphuwyrutipp tfhpqud £ wyn Ynptiph hhquijtipiph winnytphy djupugndwi
futnpht: UWphtwlwd phuwblynibhg tihuup, hhytppnip b wupupnp hwp-
PniRjwl pninp wyb Yhpptiph puquinipymbbtpt b, npnighg jnipupwbsjniph
hunfup ppywd Ytaphg (Ghquytiphg) b ppdwd mnnhg (nhptiypphuhg) hti-
nwynpmpgmbbbph hwpuwpbpmpmip hwugugpmi £ (hwguuwn © tpught-
pphuhyptipht): Mpngtyy] hwppnpub dke wyn tiptip Ynptint mokh pin-
hwbnip htbp Gpypnpn Gupgh &Jwdhpp: Wn 4nph dhengny uwhdwbynid
O Ynph Yhbgppnbh, hwdwms ppudwgstiph qnygtipnh, wnwbgpbbph hwu—
Jugmpymbbtpp: Ypubg jhquibiptiph hwujugnpymbp tipdmdtin hwdwp
wbhpwdboy t Juypupt] wmbhwpuubwgny, ophtwy, ttipdmotiny nhpty-—
yphup: W nhiypmy hwpwynp t juenigtp hwdwoyuygpuupowb jhquytiypp:
Swjwrwyp bpb ppdwd ©wyn Ynptinhg nput dthh jhquitpp, wyw dhwp-
dtipnptil unmgynud £ hwdwwuwpuuppwd nhptlyphup: W pninp junm-
gnuiitipp hwpdwp £ quypupb) pbnyuyijuwd BYyihnbuyywmt jud wphbwud
hwppnpjul dnnbnud: Wn dnpbmd wowbabugymd E wyuybu Ynsgud wb-
ytipe htinnt Ytaptiph ninhnp, nph ypw wowowdmy £ npnpwh hbynpynighw:
Wn htynpynmghwd jupnn Lt mbtbw] jud smbtbw; wbpwupd Ytptip: dpubd
hwiwywpuupwh upugymd Go hhybppnp (bpyne wipwpd Yhg), wuwpwpng
(Ut wtpwpd Ytap) b Ehuu (wipwpd Yhptpp puguluymd bb): Wn nby-
ptiphg yjmpuwpwbsymph hwdwp bqupugpymud E jhqutph qunmgdwb gnp—
opbpwgp:
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Holomorphic Besov spaces of holomorphic
functions on the polydisk and unit ball in C"

A. Harutyunyan

Yerevan State University, Armenia
E-mail: anahit@ysu.am

Let U™ be the unit polydisk in C™ and S be the space of functions of
regular variation. Let 1 < p < oo, omega = (wi,...,wy), wj € S(1 <
j <n)and f € H{U™). The function f is said to be an element of the
holomorphic Besov space By (w) if

= [, 1P TT 22 dmantz) < 420

where dma, (2) is the 2n-dimensional Lebesgue measure on U™. We show
that By(w) is a Banach space with respect to || - ||, () and the set of
polynomials is dense in B,(w). The properties of the functions in S can
be found in [1].

Next we consider w- weighted Besov spaces of holomorphic functions
on the unit ball in C™ . Let B™ be the unit ball in C n and S be the space
of functions of regular variation. Let 0 < p < 400, The function f is said
to be in holomorphic Besov space Bp(w) if

10 = [ 0= ERPIDFP G i) < o0

where dv(z) is the volume measure on B™ . We describe the holomorphic
Besov space in terms of the corresponding L,, space. Projection theorems
and theorems of existence of inverse are proved. We also give explicit
descriptions of the duals of these spaces.([2])
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The spectral theory of the family of
Sturm-Liouville operators

T.N. Harutyunyan

Yerevan State University, Armenia
E-mail: hartigr@yahoo.co.uk

Let iy (g, 0, 8) ,n=0,1,2,..., are the eigenvalues of the Sturm-Liouville
problem L (q,«, j3) :

—y"+aq(@)y=py, x€0,m),q€Lg[0n],
y(0)cosa + 4 (0)sina =0, a € (0,7],

y(m)cos B +y (m)sin B =0, B [0,m).

The first question that we want to answer is:

How to move the eigenvalues, when (a, 8) change on (0,7] x [0, 7).

For this purpose we introduce the concept of the eigenvalues function
(EVF).

Definition: The function pg (-,-), defined on (0,00) x (—oo,m) by
formula

def
uq(a+7rk,ﬂ—7rm) = ,U'k'+m(Q7O‘wB)a k7m2071727"'7

called the eigenvalues function (EVF) of the family of problems {L (¢, o, ) ,
€ (0,7], B €[0,m)}.

We find that this function has many properties, which we can investi-
gate and the answer to our first question is:

When («, 3) change on (0, 7] x [0,7), then the set of the eigenvalues
form an analytic surface which we called EVF.

We find necessary and sufficient conditions for function of two vari-
ables having these properties to be the EVF of the family of problems
{L(q,a,pB), € (0,7], B €[0,m)}. In particular an algorithm for solving
the inverse problem is given.
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FpaHI/I‘{HaH 3aa4da PuMmana B BecoBbIX
IIPOCTpPpaHCTBaX

['"M. Aitpanersn, B.I'. Ilerpocsu

EpeBanckuii rocygapcTBeHHbI yHUBEPCUTET, ApMeHNs
E-mail: hhayrapet@gmail.com

IIycrs p(t) = [t—t1|* .. |t —tm |, tk € T, one T = {2z, |2| = 1} egunnunas
OKPYKHOCTb U (), k = 1,2...m nmelicTBUTENbHBIE YUCTA. depe3

pr(t) = p () |rrt — ty ™ |0t — b |

)\7n“.|t —t >\'m.7

o6o3uaunmM dyHKIWo rae p*(t) = |t — t1

1, ecmm o < —1,
O =
0, ecimm ap > —1,

[ag] + 1, ecim oy menenoe,
ne =
s ecam o IIeJIoe,

Ak = ap — ng. dAcno uro N\, € (—1,0], u p*(t) € LY(T).
Pacemorpnm rpanmunyio 3agady Pumana A B cemymeil IMOCTAHOBKE:
3amada A. [Iycrs f npousBonbHas usMmepumas Ha T (pyHKIUS U3 KJjacca
LY(p). Onpenenurs anamuruveckyio 8 DT U D™, e DT = {z;|2| < 1},
D~ = {z;]z| > 1} dyuxmuo ®(2), P(co0) = 0, TaKk ITOOH UMEIO MECTO
IPAHUYIHOE YCJIOBUE

Jdim () — a(t)2 (r7) — £l 1y = 0, 1)
Lze a(t),a(t) # 0 upomssoibuas dynxmus u3 xnacca CO(T),6 > 0, &+
cyxennsa bynkumn ® ma DT coorsercrsenno. O6ozmaunm k = inda(t),t €
T'. Anajnoruunas 3aja4a, KOrja HocraHoBKe Korja p(t) = 1 ucienosana B
pabore [1]

m

B pabore ycranasimBaercs, 4TO €Cau E ng + £ > 0, To 3a7maqa A
k=1

m
paspemuma st Jiroboit pyukiwu f. [pn Z ng + Kk < 0 moIydeHbl Heob-

k=1
XOOUMBI€ U JOCTAaTOYHbBIEC YCJIOBHA PA3PEHINMOCTH 3TOM 3aJa491. Pemenus

IIOJIYy9I€HbI B ABHOM BH/IE.
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Short exact sequences of some subalgebras
of the Toeplitz algebra

K.H. Hovsepyan

Kazan State Power Engineering University, Russia
E-mail: karen.hovsep@gmail.com

Introduction. In this paper we consider some subalgebras of Toeplitz
algebra, for which there exist short exact sequences.

Section 1. Let T be a shift opertaor acting on a Hilbert space [?(Z,.) in
the following way: Te, = e,11, where {e,}32 is an orthonormal basis
in (?(Z,). C*-algebra generated by the operator T is called Toeplitz
algebra and is denoted by T. It is obvious, that each element of 7 has
the form T"T* for some n,l € N. Element T"T*" of the Toeplitz algebra
we call monomial, and a number n — [ index of the monomial T7T*.
Let 7(m) be a C*-subalgebra of the Toeplitz algebra, generated by the
operators T, T*™ and 7T, subalgebra of the Toeplitz algebra, generated
by all monomials, index of which is divisible by m. It is evident, that

T(m) C T

Lemma 1. Let K,, be a subalgebra of compact operators in T,,, then

Km EéK:K@...EBIC,
where K is a subalgebra of compact operators of the Toeplitz algebra.
We denote by J; the ideal of K, i-component of which is 0, that is:
Ji=K®..eKe0eKs...aK.

It is evident, that {J;}; is a family of maximal ideals of the algebra IC,, .
Section 2.

Definition 1. Sequences of type 0 — A - B 5 C' — 0 are called
short exact sequences, where q - monomorphism, r - epimorphism, and
ker(q) = im(r). If there exist *-homomorphism t : C — B, such that
rot=idc, then short exact sequence is called splittable. (see [1])

In the work [2] Coburn proved the following result:
Lemma 2. There exists short exact sequence:
0K —=T—=C(S") =0,

where C(S') - is the algebra of all continuous functions on S'.
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We prove the following Theorems using the Lemma noted above.

Theorem 1. There exist short exact sequences:
0 — K(m) — T(m) — C(S') — 0,
0= K — T — C(S*) = 0.
Theorem 2. There exist short exact splittable sequences:
0= () i = Ton = T =0,
k=1

where 1 < iq < iy < ... < 1, < m. Moreover, T,, is isomorphic to the
direct sum of algebras:

Corollary 1. The following short exact sequences are splittable:
0=Ji=>Tm—>T(m) =T —0,

where 1 <7 < m.
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Constructive method of the factorization
matrix function

A.G. Kamalyan

Yerevan State University, Armenia
E-mail: kamalyan_armen@yahoo.com

We will discuss one constructive method of the factorization matrix func-
tion. This method is based on structural properties of kernel of Teoplits
operators.
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On an equivalency of differentiation basis of
dyadic rectangles

G.A. Karagulyan, D.A. Karagulyan, M.H. Safaryan

Yerevan State University, Armenia
E-mail: g.karagulyan@yahoo.com, davidkar@yahoo.com, mher.safaryan@gmail.com

Introduction. Let R be the family of half-closed rectangles [a, b) X [¢, d)
in R2. Then let RY2di¢ he the family of dyadic rectangles of the form

i—1 1 j—1 3 .
|:2n’2n>><|:27n72m,>’ i,j,n,m € Z, (1)

We have R¥2dic € R. For a given rectangle R € R we denote by len(R)
the length of the bigger side of R. A family of rectangles M C R is said
to be a differentiation basis (or simply basis), if for any point x € R? there
exists a sequence of rectangles Ry € M such that x € R, k = 1,2,...
and len(Ry) — 0 as k — oo. For a differentiation basis M C R and for
any function f € L*(R?) define

1 1
om(z, f) = limsup —/ f(t)dt — liminf —/ f(t)dt.
(@) len(R)—0 || JR 0 len(R)—0 |R| /g ()

zEREM rEREM
The integral of a function f € L*(R?) is said to be differentiable at a point
x € R? with respect to the basis M, if Jo(, f) = 0. Consider classes of
functions

F(M) ={f € L(R?) : dp(z, f) = 0 almost everywhere },
FHM) ={f € L(R?) : f(x) >0, dum(z, f) = 0 almost everywhere }.
The following classical theorems determine the optimal Orlicz space for
the functions having a.e. differentiable integrals with respect to the entire

family of rectangles R, which is the space L(1 + log L)(R?) C L'(R?),
corresponding to the case ®(t) = t(1 +log™ t) ([1]).

Theorem 1 (Jessen-Marcinkiewicz-Zygmund, [2]). L(1 + log L)(R?) C
F(R).

Theorem 2 (Saks, [4]). If ®(t) = o(tlogt) ast — oo, then ®(L)(R?) ¢
F(R). Moreover, there exists a positive function f € ®(L)(R?) such that
or(x, f) = oo everywhere.
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Such theorems are valid also for the basis RY2di¢, The first one triv-
ially follows from embedding L(1+log L)(R?) C F(R) C F(R¥adic). The
second can be deduced from the relation F+(R¥adic) = F+(R), due to
Zerekidze [7].

Let A = {v; : k = 1,2,...} be an increasing sequence of positive
integers. This sequence generates the rare basis R4, of dyadic rect-
angles of the form (1) with n,m € A. This kind of bases first considered
in the papers [6], [5]. Stokolos [6] proved that the analogous of Saks the-
orem holds for any basis RY2di¢\ with an arbitrary A sequence. That
means L(1 + log L)(R?) is again the largest Orlicz space containing in
F(RIadic ). G. A. Karagulyan [3] proved some theorems, establishing
an equivalency of some convergence conditions for multiple martingale
sequences, those in particular imply some results of the papers [6], [5].

In this paper we prove

Theorem 3. Let A = {v;} C N be an increasing sequence of positive
integers. Then the condition

sup(Vg41 — Vg) < 00
kEN

is necessary and sufficient for the equality F(RIadic \) = F(RIvadic),
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About on the first cohomology group for a
f-uniform algebra with coefficients in Z

M.I. Karakhanyan

Yerevan State University, Armenia
E-mail: m_karakhanyan@yahoo.com

Let Cp(2)be a Banach algebra of a all bounded, complex-valued, contin-
uous functions a locally compact, Hausdorf space 2 provided with the
uniform norm. Using a family of a seminorms {Pg}geco (e one can de-

fine with the help of on ideal Cy(2) a topology on algebra Cy(2), where

Py(f) = Tyfl, = suplgf], and Ty : Cp(2) — Cp(Q2) is a multiplica-
Q

tion operator Tyf = gf. In this topology an algebra C,(f2) is called a

B-uniform topology and is defined as C(£2) ([1]-[3]).

Let F be a filtering system in Cy(£2), for which a family of seminorms
{PF}FGJ:(Q) is defined a S-uniform topology in algebra Cg(€2).

Let A() is a S-uniform subalgrbra in algebra C3(f2) (see [4]). We sup-
pose that the family of seminorms { Pr} ;.. F() 8lves a [S-uniform topology
of algebra A(Q).

We denote by Ap(£2) a completion by anorm ||-||ee, = PF(‘)/ Ker(Pp)
of an algebra A(Q)/Ker(PF) for each F' € F(Q) be a commutative Ba-

nach algebra.
Let 7 be an algebraic morphism A(Q2) — Ap(£2) which is a superposi-
tion of a canonical epimorphism 7 = A(Q) — A(Q)/ Ker(Pp) and the

natural injection Jp : A(Q)/Ker(PF) — Ap(Q) that is 7p = Jp o 7y.
Because an algebra A(Q) is a S-uniform. The algebra A(£2) coincides (to

with in isomorphism) with the proectiv limits of the system of Banach
algebras (Ap(Q);7p ), that is A(Q2) = liin(Ag(Q); e ) (see [5]).

Let A71(Q) be a group of inverse elements, for a S-uniform algebra
A(Q). Then the group A~1(Q) is an open set of a S-uniform algebra
A(£2), because a some p-sphere (ball) with a unit origin is contained in
A~H(Q) (see [6]). Let AM(Q) be a main component of a group A~(Q).

Theorem 1. The following diagram is a commutative diagram of an in-
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ective homorphismes

A7) [ q@) — lim A7) / exp(Ap(92))
1 4
G /oy — 1im O MAR) [ exp(0(M(AR©))

and
lim AR () [ xp(Ap(0)) = lim HY (M(Ap(2)),2).

The proof follows from a classical Arens-Roiden theorem for commu-
tative Banach algebras and the facts, that for a S-uniform algebras there
take place

A(Q) = 1i(£n (Ap(Q);mpy) and Cp(Q) = liin (Cr(Q);mrm).

As a corollary the following results hold.

Theorem 2. Let bQ = M(Cy(2)) be the space of a mazimal ideals of
a Banach algebra Cg(€2) where b is a Stoun-Chekh compactification for

Q. Then the group Cﬁ_l(Q)/eXp(CB(Q)) is isomorphic to the image of
homomorphism H' (6Q,7Z) — H' (Q,Z).
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Integral representation through the
differential operator and embedding
theorems for multianisotropic spaces

G.A. Karapetyan

Russian-Armenian Slavonic University, Armenia
E-mail: Garnik_Karapetyan@yahoo.com

Let R"™ is n-dimensional space, Z is the set of multi-indices. For the set
of multi-indices let’s denote through Y the smallest convex polyhedron,
containing all the points of the given set. The polyhedron is said to be a
completely correct, if:

a) has a vertex in the origin of coordinates and in all the coordinate
axes;

b) outward normal’s of all (n — 1) -dimensional non-coordinate faces
are positive.

Let pu; is the outward normal of the face Ngn_l) such, that Yo €
R (o) = a4 oo 4 il = L] = |ud] 4+ || Let
us denote through W;f(R”) the set of all measurable functions in R™ for
which f € L,(R™) and for any Vo' € Ngnfl)D‘“f €L,(R"),i=1,---,M.

In the present work the integral representation through the differential
operator is offered, which is generated via the polyhedron X and applying
the obtained integral representation, the embedding of the set W;f(R”)
in Ly(R™) is proved.

Theorem 1. Let R is a convex polyhedron and f € L,(R") and Vo € 'R
D> f e L,(R"). Let the multi-index 3 and the numbers 1 < p < g < oo
are such, that (8;u) + %

-dimensional hyper-plane of the polyhedron N.
Let

- %) lu| < 1, for any normal p of the (n — 1)

1 1 1 1
(i) + (5= 2l = B+ (3 = 2 ) ol
P q P q
Then DPW(R™) embedding Lq(R™), i.e. for any f € WE(R™) there
exists DPf € Ly(R™) and the following estimation is true

M
—_((8: 1_1 o
”Daf”Lq(Rﬂ) < Clhl ((57M0)+(p q)‘”ol) Z ||D f”Lp(R") +
=1

+ CQh*((ﬂ;uoH(%f%)Iuol) £, (&)

61



where C1, Cy are numbers independent of f, h, and h is a parameter, which
varies in 0 < h < hg.
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On One Integral Equation with Chebyshev
Polynomial Nonlinearity

A .Kh. Khachatryan, Kh.A. Khachatryan, Ts.E. Terdjyan

Institute of Mathematics of NAS, Armenia,
Armenian National Agrarian University, Armenia
E-mail: Aghavard@hotbox.ru, Khach82Q@Qrambler.ru, Terjyan73@mail.Tu

We consider an integral equation on half-line with Chebyshev polynomial
nonlinearity, arising in dynamic theory of universe and p-adic string the-
ory.

We prove existence of the positive and monotonically increasing con-
tinuous solution in class of essentially bounded functions on half-line. We
also found two sided estimates for obtained solution, as well as the limit
of solution at infinity.

We prove uniqueness of a solution in the certain class of functions.

We generalize the results for more general integral equation with ”dou-
ble” nonlinearity.

At the end we give some examples of functions, describing nonlinear-
ity.Using suggested constructive solution method we present some results
of numerical calculations, having direct application in cosmology.

Acknowledgement. This work was supported by state of Science MES
RA in frame of the research project SCS 13YR-1A0003.
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The Interior Transmission Eigenvalue
Problem for a Spherically-Symmetric
Domain with Anisotropic Medium and a
Cavity

A. Kirsch, H. Asatryan

Karlsruhe Institute of Technology, Germany
Yerevan State University, Armenia
E-mail: andreas.kirsch@kit.edu, asthaik@ysu.am

We consider the scattering of spherically-symmetric acoustic waves by
an anisotropic medium and a cavity. While there is a large number of
recent works devoted to the scattering problems with cavities, existence
of an infinite set of transmission eigenvalues is an open problem in gen-
eral. We prove existence of an infinite set of transmission eigenvalues for
anisotropic Helmholtz equation in a spherically-symmetric domain with
a cavity. Further we consider the corresponding inverse problem. Under
some assumptions we prove the uniqueness in the inverse problem.

Acknowledgement. The research of H. Asatryan has been supported
by the German Academic Exchange Service (DAAD).
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CI/IMMeTpI/I‘IeCKI/Ie YpaBHEHUA B CBO60,Z[HOM
MoHOonJe C ImapaMeTpneCKnIMU IIoOKa3aTeJIdMn

A III. MaJjixacsu

EpeBanckuil rocyiapcTBeHublil yHUBepcuTeT, ApMeHust
E-mail: amalkhasyan@mail.ru

B 1977 roay [1] I.C.MaxaHuH BIlepBBIe JIOKa3aJl, YTO CYIIECTBYET AJro-
PUTM, PACIOZHAIONINI Pa3pPeNImMOCTb TPOM3BOJILHON CHCTEMBI Y PABHEHHIA
B ¢BOOOIHOM MOHOHME. HecMOTpsT HA MHOTOYNCJICHHBIE YCUJIHS, JIO CAX
[OP OCTAETCs OTKPBITON MpOoGJIEMa ONMCAHUS OOIIEro pEIeHns ypaBHe-
HUSI B CBODOJHOM MOHOWIE. I3BECTHBI HEKOTOpPbIE METO/BI TAKUX OIMUCA-
HUIT; TapaMeTpu3allus, ONICAHUS C IIOMOIIbLIO IpadoB, OINCAHHUSA C TOMO-
mpio GyHKIWMA, onpenesneHHbx B paborax I.C.Makanuna (cM.[2]), n psig
npyrux. B ynomsmyToit padore [2] I.C.Makanumbiv 66110 HalieHo obiee
pEIeHne CUMMETPUIECKOTO YPABHEHUS

T1TD ... Tpy1Ty, = TnTp—1 ... T2T1 (1)
B CBODOJIHOM MOHOUJE C aJIPpaBUTOM 0OPA3YIOIINX

a1,0a2,...,0m (2)

B macrosmem mokaame coobImaeTcss ITo MOJTYIeHO OMUCAHKE ODIIEero pe-
IIeHNs] yPABHEHUST BUIA

_ -1 A2 A1
e AL R Xl A (3)
rje \; mapaMerpbl, IPHHEMAIOIINE IeJIble HEOTPUIATE bHbIE SHATCHHSL.
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Approximation of functions using the scaled
Laplace transform

R.M. Mnatsakanov, K. Sarkisian

West Virginia University, USA
National Institute for Occupational Safety and Health, USA
E-mail: rmnatsak@stat.wou.edu, vtq0@cdc.gov

Introduction. In this talk the problem of recovering a function F', its
derivative, and the primitive function given the Laplace transform of the
underlying function F' is studied.

Recall that the problem of inverting the Laplace transform represents
very severe ill-posed inverse problem. We refer to [1] were the rate of
convergence of regularized version of the inverse of the Laplace transform
was studied. In [2]-[3] the moment-recovered approximations of a cumu-
lative distribution function (cdf) F' and its probability density function
(pdf) f = F’ were suggested and their asymptotic properties were inves-
tigated. Let us mention only two different methods for approximation of
the Laplace transform inversion, see [4] and [5] among others. The for-
mer article uses the maximum entropy method, while in the later one the
moment-recovered approach that is based on the several moments of F'.

In our talk we present the uniform upper bounds for the approximation
errors and demonstrate their asymptotic behavior via the plots and tables.

Section 1. Let us suppose that the cdf F' is absolute continuous with
respect to the Lebesgue measure and has a support in Ry = [0,00). De-
note by f the corresponding density function of F' with respect to the
Lebesgue measure on R;. Given the values of the Laplace transform of
F

EF(8)=/ e=TAF(r), as s€{0,nb,2mnb,....alnb},
Ry

we suggest the approximations of Laplace transform inversions recovering
F and f, respectively:

Fupla) =1- MZ]Z () (1) vt erimy

a—[ab™ 7]

[ab™*]T(a +2) Z (=)™ Lp((m + [ab™*]) Inb)

fap(z) = al([ab=] +1) m! (a — [ab=*] —m)!

(1)
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as x € Ry and a — oo (cf. with [5] and [6]). We assume that the scaling
parameter b € (1,exp(1)). The problem of choosing the optimal value of
b by minimizing the approximation error will be addressed as well.

Similar questions in the multivariate case will be discussed. In par-
ticular, using the two-dimensional version of (1), we approximate the
probability density function f as follows:

[ab~][a/b~ Y] In?(b) T(ar + 2) T(c/ + 2)
aa’l"([ab*I] + DT ([a’b~¥]+ 1)

fa,b($7y) =

a—[ab™*] o' —[a’b7Y] _ _
(=)™ Lp((m+ [ad~"])Inb, (I + [a'b7Y]) Inb)
% Z Z ml (ozli [ab==] — m)l 11 (o — [a/b=¥] — 1)1

where 2,y € Ry and a = (o, /) e Nx N,N={1,2,...}.
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Non-idempotent Plonka Functions and
weakly Plonka Sums

Yu.M. Movsisyan, D.S. Davidova

Yerevan State University, Armenia
European Regional Academy, Armenia
E-mail: yurimouvsisyan@yahoo.com, di.davidova@yandex.Tu

There exist various extensions of the concept of a lattice. In this talk
we study weakly idempotent lattices with an additional interlaced op-
eration. We characterize interlacity of a weakly idempotent semilattice
operation, using the concept of hyperidentity; and prove that a weakly
idempotent bilattice with an interlaced operation is epimorphic to the su-
perproduct with negation of two equal lattices. In the last part of the talk
we introduce the concepts of a non-idempotent Plonka function and the
weakly Plonka sum and extend the main result for algebras with the well
known Plonka function to the algebras with the non-idempotent Plonka
function. As a consequence we characterize the hyperidentities of the
variety of weakly idempotent lattices, using non-idempotent Plonka func-
tions, weakly Plonka sums and characterization of cardinality of the sets of
operations of subdirectly irreducible algebras with hyperidentities of the
variety of weakly idempotent lattices. Applications of weakly idempotent
bilattices in multi-valued logic is to appear.
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Boolean-Linear Quasigroups

Yu.M. Movsisyan, G. Rustamyan

Yerevan State University, Armenia
E-mail: yurimouvsisyan@yahoo.com, gor.rustamyan@gmail.com

The present paper is devoted to the study of a special type of quasigroups
of the order 2™, which we call boolean-linear quasigroups.

Let (Q, %) be a quasigroup of the order 2™ and /3 be a bijective mapping
B Q — Z%, where Z3 is the n-ary boolean vector field. Then there exists
a uniquely defined mapping f : Z§ x Z% — Z% for which the following
equality is valid:

f($17"'7xn7y17"'7yn) = B(B_l(xla“wxn) *5_1(3/17"'7:%’1))7

or in a more compact form: z xy = S~L(f(B(x), B(y))). We omit 3 and
write  x y = f(z,y) in the text below.

Definition 1. The quasigroup (Q, *) is called a boolean-linear quasigroup
(or, in short, a BL-quasigroup), if it can be represented in the following
form:

rxy = f(r,y) = A1(2) -y + bi(x) = Aa2(y) - = + b2(y),

where Aq(x), As(y) are nxn matrices, and by(x), ba(y) are nx 1 matrices
over {0,1}.

Theorem 1. If quasigroup (Q,*) is a BL-quasigroup, then
1. Vo € Q, det(A1(z)) = det(Az(z)) = 1.
If matrices A1, Ay and by, by satisfy the following identities:
2. Vx € Zy, det(A1(x)) = det(Az(x)) =1,
3. Va,y € Z3, A1(x) -y + bi(z) = Ao(y) - @ + ba(y),
then Z§ with the operation defined by the rule: x xy = f(x,y) = A1 (z) -
y + b1(z) forms a BL-quasigroup.

Theorem 2. If (Q, *) is a BL-quasigroup, then Aj(z) = As(x) iff b1(z) =
b2 (LE)

Theorem 3. The BL-quasigroup (Q,*) is a commutative iff Aj(x) =
A2 (I),VI’ € Q

Theorem 4. A BL-quasigroup (Q, *) has an identity element, or, in other
words, is a loop, iff there exists e € Q such that by(e) = ba(e) = 0 and
Al(e) = AQ(G) = F.

69



Theorem 5. If BL-quasigroup is a loop, then it is commutative.

Let (Q,*) be BL-loop. It follows from the previous theorems that
Aq(z) = As(z) = A(x) and by (x) = ba(x) = b(x). We make the following
denotations: A(0) = Ag and Ay - e = by.

Theorem 6. If (Q,*) is a BL-loop, then x xy = A(x)-y+ Ap -z + by =
Aly) -z + Ao -y + bo.

Definition 2. A Moufang loop is the loop @ that satisfies the following
equivalent identities:

1. x(y*xxz) = (xy * x)z,

2. (zzxxy)z = z(x * yx),

4. (wy)(zx) = alyz + ).

These identities are known as Moufang identities. If a Moufang loop
is commutative (i.e. the identity x *y = y x x holds in the loop), then the
loop satisfies the following identity:

5. 22 xyzr =2y 2.

Theorem 7. The BL-loop is a Moufang loop iff it satisfies the following
identities:

1. A(Ag-z) - Alx)-y+ A(Ap-y) - A(z) o+ A(Ap-x) - Ag -z + A(Ap -
y) Aoz + A(Ag-x) b+ A(Ag - y) - bo + A(z *y) - by + A(x x x) -
bo+ Ag-Ag-z+ Ag- Ag-y =0,

2. A(zxy) - Alx) = Az = z) - A(y).
In the case of e = 0, the first identity can be simplified:

1. A%(z) -y + (A(y) - A(x) + A(z) + A(y)) -2 + (z +y) = 0.
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The relationship between covariograms of a
cylinder and its base

V.K. Ohanyan

Yerevan State University, Armenia
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Let R™ be the n—dimensional Euclidean space, D C R™ be a bounded
convex body, S"~! be the (n — 1)-dimensional unit sphere centered at the
origin and L, (-) be the n-dimensional Lebesgue measure in R™.

G. Matheron formulated a hypothesis that in the class of all bounded
convex bodies, a bounded convex body is determined by its covariogram.
This hypothesis is known as Matheron’s conjecture (see [1]). In [2], G.
Bianchi and G. Averkov confirmed Matheron’s conjecture for n = 2. G.
Bianchi has also proved that for n > 4 the hypothesis is false. Very little
is known regarding the covariogram problem when the space dimension
is greater than 2. It is known that centrally symmetric convex bodies in
any dimension, are determined by their covariogram up to translations.
For n = 3 the problem is open. Nevertheless, for the case of bounded con-
vex polyhedron for n=3 Matheron’s conjecture received a positive answer
(see [3], [1]). Thus, investigation of the covariogram of three dimensional
convex bodies becomes an important first step in the study of Matheron’s
conjecture in R3. Note that the explicit form for the covariogram of three
dimensional convex bodies is known only in the case of a ball. The func-
tion Cp(x) = Ly, (DN{D+z}) x € R", is called the covariogram of the
body D. Let G be the space of all lines in the Euclidean plane R?, g € G
and (p, @) are the polar coordinates of the foot of the perpendicular to
g from the origin, p > 0, ¢ € S'. For a closed bounded convex domain
D C R? we denote by Sp(y) the support function in direction ¢ € S*
defined by Sp(p) = max{p € R* : g(p,p) N D # 0}, where RT is the
set of nonnegative real numbers. For a bounded convex domain D C R?
we denote by bp(p) the breadth function in direction ¢ € S, that is, the
distance between two support lines to the boundary of D that are perpen-
dicular to ¢. We have bp(p) := Sp(¢)+Sp(p+m). For a bounded convex
domain D the chord length distribution function in direction ¢, denoted
by Fp(z, ), is defined to be the probability of having chord x(g) = gND
with length at most = in the bundle of lines parallel to ¢. A random line
which is parallel to ¢ and intersects D has an intersection point (denoted
by y) with the line [,. The intersection point y is uniformly distributed

Ll{yzx(lsﬂry)ﬁr}_ The

on the segment [0,bp(¢)]. Thus we have Fp(z,¢) = )
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orientation dependent chord length distribution function and the covar-
iogram for n = 2 are known only in the cases of a disc, a triangle, a
regular polygon, a parallelogram and an ellipse (see [4]-[6]). Denote by T’
the space of lines v in R3. Let IIp(w) denote the projection of a bounded
convex body D C R3 in direction w € S? and let sp(w) be its area. Every
line which is parallel to w and intersects D has an intersection with IIp (w).
Denote that point by y and that line by I, +y. The intersection point y is
uniformly distributed on IIp(w). The chord length distribution function
of D in direction w € S? is defined by Fp(z,w) = Lofyx(oty)sa} ) ghe

sp(w
paper [7] the following results are obtained: (1) Relatioils)hips between
the covariogram and the orientation-dependent chord length distribution
function of a cylinder and those of its base. (2) Explicit forms of the covar-
iogram and the orientation-dependent chord length distribution function
of a cylinder with cyclic, elliptical and triangular bases.
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KacarenbHble BEKTOpPHBIE 110/ HA
TUIEPIIOBEPXHOCTAX €BKJINAOBbIX
MIPOCTPAHCTB

A.A. Oraukan

EpeBanckuii rocyiapcTBeHHbI yHUBEpCUTET, ApMeHUst

lNuneprioBepxuocTsb SP'Y B €BKJIMIOBOM IIPOCTPAHCTBE PA3MEPHOCTH

n = p+ q + 1 oupenessercs Kak IPOCTPAHCTBO, 00OPA30BAHHOE BCEMU TOU-
KaMi & = (20,1, ..., Tptq), TOC TG+ 2T +. .. ad —a2  —. .. —a5, =1
PaccmarpuBaercst 3aada HAXOXKJICHUST TPSIMOYTOJIBHBIX O0Pa3yIoNuX y
9TUX TUIIEPIOBEPXHOCTEI, TO eCTh TpeOyeTCsl OMUCATH IIPOCTPAHCTBO BCEX
[PSIMBIX, IEJMKOM JIEXKAIUX Ha, JaHHON rureprioBepxHoctu. Hampumep,
XOPOITIO U3BECTHO, UTO rumeprosepxHocts S11 (oaromnomocTHbil runep6o-
JIOUJT) SIBJISIETCsI JIBAXKIbI JIMHEHIATO IIOBEPXHOCTDIO.

Pemtenne obrmieit 3ajiaqm TeCHO CBSI3aHO € 3aJladeil TIOCTPOEHUST Kaca-
TeJIbHBIX JINHEIHO HE3aBUCHMBIX BEKTOPHBIX moJieil na SP9. Hampuwmep,
runeprosepxaocTh S1? mapasienesyema, u HaIUUne Ha Heil B ABHOM BH-
Jie TPeX KacaTeJbHBIX JUHEIHO He3aBUCUMBIX BEKTOPHBIX HOJIEH TT03BOJISI-
eT JIOKa3aTh, 9TO TPOCTPAHCTBO TPAMOJMHEHHBIX obpasytomux g 512
romeoMopdHO 2-MepHOMY TOPY. Bostee Toro, craHOBUTCS BO3MOYXKHBIM CO-
CTABJISITh B SIBHOM BHJIE YPABHEHUSI BCEX MPSIMOJIMHENHBIX 00Pa3yIOIINX,
[IPOXO/ISAIINX Yepe3 JAHHYIO TOUKY TUIEPIIOBEPXHOCTH.

OcHoBBIBasiCh Ha KOHCTPYKIWHA U3 [1], mis sroboro 4, ¢ > ¢ > 0 Ha ru-
nepuosepxocru S4B asHOM Buie crpoarca p(p + 1) + q — i JuHEiHO
HE3aBUCUMBIX KACATEJIbHBIX BEKTOPHBIX TOJIEH, e p - dyHKus Pamgona-
Typsuna. O6ozuayum r(p, q) = maz(p(p + i) + —i), rme ¢ > @ > 0, u wycrb
R(p,q) MakcuMaIbHOE YUCJIO KacaTeIbHBIX JIMHEHHO HE3aBUCHMbIX BEK-
TOpHBIX noJjieit Ha SP'4. CjenoBare/ibHO, IMEET MECTO

Teopema 1. R(p,q) > r(p, q).
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On the constructive solution of an inverse
Sturm-Liouville problem
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Let L (g, «, 8) be the Sturm-Liouville boundary value problem

—y" +qx)y=py =Ny, z€(0,7), peC,
y(0)cosa+1vy' (0)sina =0, a € (0,7],

y(m)cos B+ (w)sinB =0, B € [0,7),

where g is a real-valued, summable function on [0, 7] (¢ € L [0,7]) .

The question ”What kind must be the sequences {y,} ., and
{an},~,, for them to be the spectrum and the norming constants
of a problem L(q,«, (), respectively” is well studied for the cases
g€ L30,7], o, € (0,7) and a =, B =0 ([1, 2, 3, 4, 5, 6, 7]). For
the case ¢ € L} [0,7] and sina = 0 (a=m), B € (0,7) (analogously
for « € (0,7), sinf = 0 (8 =0)) some aspects of this question have
also been studied by the above mentioned and other authors, but, to
our knowledge there are no necessary and sufficient conditions for the
sequences {pn}.o, and {a,},-, to be the spectrum and the norming
constants for the problem L(q,m, 8) (analogously for L(q, «,0)). We solve
this problem in the following theorem:

Theorem 1. For the two sequences {ji,},. o and {a,},—, to be the spec-
trum and the norming constants of a problem L(q,,3), with g € L& [0, 7]

and B € (0,7), it is necessary and sufficient that the following relations
hold:

c

_ _ 1
\/lTn:)\n—n+§n(7T7ﬂ)+2(n+5n(ﬂ_7B))+ln+O(nQ>7



where 6, (v, B) is the solution of the following transcendental equation

1 cos &
on(a, B) = —arccos

(n + 6n(a, B))° sin® a + cos? a

1 cos 3

— —arccos
" \/ (n+ 6, (e, B))* sin® B + cos? B

1 1
c is a constant, the reminders l, = o <> , Sp = 0 <> and they are
n n

such that the functions

Iz, B) = Z lpsin(n 4 o, (m, B))x,

n=2

(oo}

s(x,8) =Y sncos(n + dn(m, B))x

n=2

are absolutely continuous on arbitrary segment [a,b] C (0,2), uniformly
with respect to B € (0,7) and q from the bounded subsets of L} [0, 7.

References

[1] Marchenko, V.A. “Some questions of the theory of one-dimensional
linear differential operators of the second order.” Trudy Moskov. Mat.
Obsh., 1, (1952): 327-420.

[2] Gelfand, I. M. and Levitan, B.M. “On the determination of a differen-
tial equation from its spectral function.” Izv. Akad. Nauk SSSR, ser.
Math., 15, no. 4, (1951): 309-360.

[3] Gasymov, M.G. and Levitan, B.M. “Determination of a differential
equation by two of its spectra.” UMN, 19, no. 2, (1964): 3-63.

[4] Zhikov, V.V. “On inverse Sturm-Liouville problems on a finite seg-
ment.” Izv. Akad. Nauk SSSR, ser. Math., 31, no. 5, (1967): 965-976.

[5] Isaacson, E.L. and Trubowitz, E. “The inverse Sturm-Liouville prob-
lem. I.” Comm. Pure Appl. Math., 36, no. 6, (1983): 767-783.

[6] Poschel, J. and Trubowitz, E. Inverse spectral theory, Academic Press,
Inc., Boston, MA, 1987.

[7] Freiling, G. and Yurko, V.A. Inverse Sturm-Liouville Problem and
Their Applications, NOVA Science Publishers, New York, 2001.

75



ARMENIAN MATHEMATICAL UNION ANNUAL SESSION 2015

Reciprocity Laws and Arithmetic Geometry
M. Papikian

Pennsylvania State University, USA
E-mail: papikian@psu.edu

Introduction. The simplest example of a reciprocity law is Gauss’s
Quadratic Reciprocity. I will give an overview of generalizations of quadratic
reciprocity studied in modern number theory. Then I will describe such
reciprocity laws arising from elliptic curves and Drinfeld modules. Finally,
I will discuss how to derive from a particular reciprocity law a criterion
for the splitting modulo primes of a class of non-solvable polynomials over
F,(T) studied by Abhyankar. (This is a joint work with Alina Cojocaru.)
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Duality in weight spaces of functions
harmonic in the unit ball

A.l. Petrosyan

Yerevan State University, Armenia
E-mail: apetrosyan@ysu.am

A positive continuous decreasing function ¢ on [0,1) is called weight
function if lime(r) = 0, as r — 1, and a positive finite Borel mea-
sure 1 on [0,1) is called weighting measure if it is not supported in
any subinterval [0,p), 0 < p < 1. Let ho(¢) be the Banach space
of functions u, harmonic in the unit ball B, C R"™, with the norm
llull, = sup{|u(z)|e(|z|): = € By} and let ho(yp) be the closed subspace
of functions u with |u(z)| = o(1/¢(|z]) as |z| — 1.

It has been shown by Rubel and Shields, [1] that k() is isometrically
isomorphic to the second dual of ho(y). In [2], in the case n = 2, it was
posed and solved the duality problem of finding a weighting measure 7
such that

h'(n) = {v € L'(dn(r)do): v is harmonic in Bs}

represents the intermediate space, the dual of ho(p) and the predual of
hoo(@)7 Le. hl(’l) ~ hO(QO)* and hl(’l)* ~ hoo(n)

It is well-known that in the case n = 2 every harmonic function h
has expansion in a series on degrees z and Z in unit disk |z| < 1, since
real-valued harmonic function is a real part of a holomorphic function.

We consider duality problem in the case of harmonic functions in the
unit ball of R™, n > 2. The multidimensional case has the specifics in the
sense that we can not speak about connection between harmonic and holo-
morphic functions, and instead of degrees z and Z we deal with spherical
harmonics.

We use the same approach to the duality problem as [2]. This ap-
proach depends on showing (see [3]) that a certain integral operator from
L (dn(r) do) to hoo(n) is a bounded projection. The kernel of the integral
operator is the reproducing kernel for ho. (1) (see [5] for details).

One could work with the analogous spaces Ag(p) and A () of func-
tions which are holomorphic in the unit ball of C™, and study the anal-
ogous duality problem. It is shown in [4] that this duality problem is
solvable if ¢ is normal.

The essential part of the definition of normal is that 1/¢(r) grows
slower than some power of 1/(1 — r) but faster than some other power.

7



In the report we suppose, that weight function grows more slowly than
some power of 1/(1 —r). Thus, we have a solution to the duality problem
for non-normal weight functions as

<p(7’)<ln ¢ >a, a>0

and

g@(r)(lnlnle > , a>0.
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Higher regularity of the free boundary in
the elliptic Signorini problem

Arshak Petrosyan

Purdue University, USA
E-mail: arshak@math.purdue. edu

One of the classical approaches in the proof of the higher regularity of free
boundaries is the hodograph-Legendre transform. A generalization of this
approach to the Signorini problem, where the free boundary is thin (i.e.
has co-dimension two ) leads to a singular hodograph transform which
can be shown to be invertible by using a precise asymptotic behavior
of the solutions. The corresponding Legendre transform solves a fully
nonlinear degenerate elliptic equation, which surprisingly has a subelliptic
structure. Treating it as an appropriate perturbation of the Baouendi-
Grushin operator, we are able to prove the smoothness and even the
real analyticity of the Legendre transform, which in turn implies the real
analyticity of the free boundary.
This is joint work with Herbert Koch and Wenhui Shi.
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The Modeling of the Priority Problem with
Some Extensions of Petri Nets

G.R. Petrosyan

Armenian State Pedagogical University after Kh. Abovyan, Armenia
E-mail: petrosyan_gohar@list.ru

In this talk the problem of modeling of a priority process is presented
[1, page 189]. The problem is discussed for several extensions of Petri
Net traits. A modeling of Petri Net traits is built, which describes the
mentioned process both in the presence of Restrictive Arc Petri Net and
Colored Petri Net. The comparison of complexity in advanced nets is
carried out. The problem is discussed for an optimization process having
comparison of nets.

Introduction. A Petri Net (also known as a place/transition net or P/T
net) is one of several mathematical modeling languages for description of
distributed systems. A Petri Net is a directed bipartite graph, in which
the nodes represent transitions (i.e. events that may occur, are signified
by bars) and places (i.e. conditions, signified by circles). The directed
arcs describe the places which are pre/post conditions for transitions (sig-
nified by arrows). A Petri Net consists of places, transitions, and arcs.
Graphically, the places in a Petri Net can contain a discrete number of
marks called tokens. Any distribution of tokens over the places represent
a configuration of the net called a marking. In an abstract sense, relating
to a Petri Net diagram, a transition of a Petri Net can fire if it is enabled,
i.e. there are sufficient tokens in all of its input places; when the tran-
sition fires, it consumes the required input tokens, and creates tokens in
its output places. Unless an execution policy is defined, the execution of
Petri Nets is nondeterministic: if the multiple transitions are enabled at
the same time, any one of them can fire. Since firing is nondeterministic,
and as multiple tokens can exist anywhere in the net (even in the same
place), Petri Nets are well suited for modeling the concurrent behavior of
distributed systems [1]-[2].

The Restrictive Arc Petri Net is quintuplets: C' = (P, P>, T,1,0). P;-
finite set of basic positions, P»- finite set of restrictive positions, T - finite
set of transitions, where Py NP, =0, PLNT =0, P,NT = (. Denote
P=PUP. I:T — P>° O:T — P> are the input and output
functions, respectively, where P> are all possible collections (repetitive
elements) of P.
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Definition: A Colored Petri Net is a tuple CPN = (>, P, T, A, N, C, G,
E, I) satisfying the following requirements:

(i) 3 is a finite set of non-empty types, called color sets.

(i) P is a finite set of places.

(iii) 7T is a finite set of transitions.

(iv) A is a finite set of arcs such that:

PNT=PNA=TnNA=10

(v) N is a node function. It is defined from A into P x TUT x P.

(vi) C is a color function. It is defined from P into ).

(vii) G is a guard function. It is defined from T resulting the expressions
such that: Vt € T : [Type(G(t)) = Bool A Type(Var(G(t))) C D]

(viii) E is an arc expressionsfunction. It is defined from A resulting the
expressions such that:

Va € A : [Type(E(a)) = C(p(a))MS A Type(Var(E(a))) C 7], where
p(a) is the place of N(a).

(ix)] is an initialization function. It is defined from P resulting the
closed expressions such as: Vp € P : [Type(I(p)) = C(p)ms].

Colored Petri Net is a graphical oriented language, which is used for mod-
eling, analysis, description and presentation systems [3].

In the classical or traditional Petri Net, tokens do not differ from each
other, and we can say that they are colorless. In contrast to Classical
Petri Nets, the position of Colored Petri Nets can contain tokens of arbi-
trary complexity - a note, lists, etc., which makes the reliable models more
possible. Let us assume, there are two processes of producers and there
are two processes of consumers. The producers should collect the data
in the buffer and the consumers should coordinate them for activities in
usage of the channel [1]. The idea of priority does not let the mentioned
system be modeled by the Classical Petri Net. The proof of the following
fact is shown in details in [[1]page 190-191]. For solving the mentioned
problem we extend several traits of Petri Net in such a way, which are
headed to opportunity of zero checking in Petri Net.
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Cnowthnn stipgqpuynpiwd btpphtt juywygnipjut
dwuhl

J.W opLpMNUSUL

Eplwbh yhypuut hwdwuwpub
E-mail: wvpiliposyan@ysu.am

Yhgnip M-p n-sanhwbh nhytiptbghh puquwalnipynib &, 7, M-p° 2 Yhpnud
tpw onpuithnn pupwdmpymbb t, huy TM = {(z;v),2 € M,v € T, M }-n
M -h pnpunthnn stipuynpmdd £, npmd Gbpdmdywd L

(xY) = (a:i;x{) = (al 2% a0l 0? 0™

[nluy ynprhbwpuyhtt hwdwwpg, npptin 2*-tpp puquyhb, hul 2°-tpp 2tp-
yh npnhbunpitpt Gb: hogytu hwppth b, judwyuud x € T, M-h hwu-
dup A, (x) = {(0;v) € Tx(TM)}-p Tu(T'M)-h thpuyrupwdnipnil £, npp
htjuphwinp L Ynpnhbunpuyhtt dbwthnpunipyut tjugpdwdp, b npp hgninpd
t T, M-ht:

Nhptptbghith x — Ap(x) pwphunip 7'M -mu Yngynud £ Gtipphb (in fini-
tezimal) Juuulgnipymb, tpl wyb hiwphwig b ynpphbwgught dbwthn-
hnipyub djupiudp b

T (TM) = Ap(x) P Av(x) :

hgnip (9;,07)-n plwlwb ntwtip &, huy e; = 9; — D}y, e; = 9;-n wyn
Otippht Juyuygnipyud hudwlggwd ntiytin £: Wyu ntiypmd, Ynpnhbwgpuht
hudwljupgh dbuthnpunmpyub dudwbwl nbkbp

N A oo fl 0
=G (1)),
pbn npnd x — Ay (x) pwpumip htquphwig £ Ynpphtwgpuyhtt dbwthn-
hunipyub tupiudp wyb b dhuyh wyb nhiygpmd, tpp
I = (fol = fa)fi 1) :

Qhgnip A 2 (X(TM) x X(TM)) — X(TM)-p gdwhtl juuyulgmpjmb
t onpunthnn otipgpuuynpdwb Ypuw b w-b opw gduyht aub k: Lodwd qdwghl
Jquuyuygnipinibp Yngymd k thnyht pbpynn, Gpt hwpduptgwd ntuybpnid

w = w1 0
o 0 w4y
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tinptd 1. Npwybuqp prowhnn phipypuwynpldwi puw ppyfuwod jhnypie
prhpyynn gouyhle huwpulgnigniin wwhwywinfh hwpdwpligywo nhwybph
aliwapmpunigyul nhyprid whhpwdbpp E b puwjwpwp, np dhpphlt hu—
wpulgnippyule ndnpiduwghuyp T = T — T pkliqnpp (pip §nifwphwion
hwupuapniii: .

Yhgnip @ : TM — T M-p pnpunhnn spypuynpmditiph nhptindnpdhqu
E, npp hbswbu hwppbh &, gpymd £

=3zt ., "), 7= aé(m)E}, det(aé) #0
hujuuwpndbpny:

@binpbd 2. ¢ :TM — ™ wppwwuapllipnaip (b a:z) dwluoywo
Ynpnpluwpuyple hwdwlwpgn wpypwwyuapylipnid £ (Wﬁ;) dwljuojuod
fnpnplwnpuyple. hwdwlpunpghle wyle b dhuyle wyle nhwpnid, bpp Gpw
®, nhdhpbhghwy wppwwuaplhipniip pujwpuwpmd £, o J = Jo &,

wpwybwlipl, npapbn J = ( 2: 8 > = J hwilwwupuuhoul snpuhng

0, 0
slppanpnidiph wphlinpilipl by, puly (D¢5) = ( 32 JER ) :
J J
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XapaKTepuCTUKa YHUTAPHBIX OIIEePAaTOPOB B
HEKOTOPBIX KJIaccax IeJblX PyHKINN

C.I'. Padaensan

EpeBanckuii rocy1apCTBEHHBII yHUBEPCATET, ApPMEHUST
E-mail: rafayelyans@ysu.am

IIycts p > 1 u W € A, -Bec Makenxaynra, T.e w(z) > 0 u3MepuMas Ha
R dyuknus u ymaoBIeTBOPSIONAs YCIOBHIO

</:|w(x) dx) (/Jw(x)_?ll da:) <CpP

rje J C R upoussBosbHbLT nHTEpBaJ, |1|-ero jymHa, a C' He 3aBUCAIIAS OT
J KOHCTaHTA.

O6o3unaunm yepes WP (w dx)(o > 0) upocrpancTso uesbix GyHkumii f
9KCIIOHEHIUAILHOIO THUIIa ¢ HOPMOit

/“@WM@®=WW<+m
R

s kitacca WP(w dx) cupaBeyiuBbl CIeyIOIIe YTBEPK ICHUSI:

Teopema 1. Jas f € WE(w(x)dx) umeem mecmo mooicdecmso

() = /Rf(t)w dt, z € C.

Teopema 2. Jlas a06020 yrumaprozo onepamopa U 6 npocmpancmee
W2(w(x)dx) cywecmeyem yeaasn dynxyua K(z,(), xomopasa no z u no
¢ us waacca W2(wdzx) (0 = w™1) u xpome mozo, dasn g = Uf umeem
MECTMO NPEOCTNABAECHUA

m@:LﬂmmLam, (1)

1) = [ gla)K(a,2) da. @)
R
Kpowme roro, dyuxius K (z,() yuoBierBopser yCaOBUAM

a)K(z,¢) = K(¢,2),
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O6parno, eciu supo K(z,() ynosiersopser ycjaoBusM a) u b), TO
OHO TOpOXKaaeT, coriacHo dbopmynam (1) u (2), yHuTApHBI OlIEPATOPOB
B ipoctpancTee W2(wdz) u emy o6paTHOIL.
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CymMupyeMoe peleHrne OIHOTO HeJINHEITHOTo
MHTErpaJIbHOTO YPaABHEHUs TUIIA

l'ammepinrteiina-BosibTeppa Ha mojiyocu

T.I. Capnapsan

Wucruryr maremaruku HAH Apmennn
E-mail: Sardaryan.tigran@gmail.com

PaccmarpuBaercs cieyiolee HeJIMHEHOE HHTErPAJILHOE YPAaBHEHNE THIIA
lammepmreitaa-Boasreppa:

@) = /V(a:,t)H(t,f(t))dt, v € R = [0, 400), (1)

OTHOCHTEJILHO HCKOMOI BEIIeCTBEHHOM 1 n3MepuMoit bynknuu f(z), onpe-
neseHHoit Ha RY.

B ypasuenuu (1) V(z,t) - onpenenennas na RY x RT uzmepumas
dbyHKIWMS, TomycKaoImasa caeayoee IpeicTaBIeHue:

V(z,t) =6(t —x) /b a(t, s)e”HE=2) 4o (s), (2)

a

rie aft, s) - onpesesennas Ha Maoxkectse R x [a,b) (0 < a < b < +00),
uamepumast byHKIMs, TPUYEM

inf ts)=8>0, 3
(t,s)eg}*x[a,b) a< S) ﬂ ( )
sup a(t, s) = ap(s) < +oo. (4)
teR*

B (2) o(s) - moHOTOHHO HeyObIBaroImas GyHKIWMs Ha [a,b), mpuiem

b
U(b)—o’(a):/ do(s) = 1, (5)

a (1) - dyukiua Xesucaiija.
PaccMOTpHM CIe Iy 0Ny o XapakTepuIecKy o (DyHKIIUIO OIPEIETEeHHY IO
na Rt :
!
= fe ——do(s), pe [0, +
X(0) = B [ ——edols). p 0 +c%).
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rie

c=2< ab b da(s))_l. (6)

ao(s)

VuursBas (3), (4) u (5), HerpyuHo y6eaurcs, 9T0 CyIECTBYET €IUHCTBEH-
Hoe pg € (0,400), Takoe 4To

x(po) = 1. (7)
3adurcupyem pg.

Teopema 1. Ilycre B ypasaenuu (1) simpo V(z,t) 3amaercss corsacHo
dopuyie (2). Iycrs, manee, cymecTsyer cymmmupyemas na Rt dynkims
B(t):

B(t) > ce Pt te RT

Takag, 9ro Jist byHkiun H (¢, 1) UMeoT MecTo CJe/yIoIue YCAOBUSI:
a. H(t,u) <u+B(t), u>e Pt te RT
H(t,e Pt > ce P! t € RT,

IJie 9ucia ¢ U Py OUpeessiorcest coracHo (6) u (7) cooTBETCTBEHHO,

b. bynknusa H (¢, u) npu kax oM dbukcuposannoM ¢ € R MoHOTOHHO
Bospacraer 1o u Ha [e Pt 400),

c. H(t,u) ynosrerBopsier ycaosnioo Kapareomopun 1o aprymMeHTy
Ha MHOXKecTBe R x RY.

Torja ypasuenue (1) umeer noJoKUTEIbHOE CyMMUpyeMoe Ha RT pe-
LIeHHUE.

Uccnenosanue Boinosaeno npu ¢punancosoit nojzepxkke 'KH MOH PA
B paMkax HaydHoro npoekta SCS 13-1A068.
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Nonlinear Model Reduction for Complex
Systems using Sparse Optimal Sensor
Locations from Learned Nonlinear Libraries

S. Sargsyan, S.L. Brunton, J.N. Kutz

University of Washington, USA
E-mail: ssusie@u.washington.edu

We demonstrate the synthesis of sparse sampling and machine learning
to characterize and model complex, nonlinear dynamical systems over a
range of bifurcation parameters. First, we construct modal libraries using
the classical proper orthogonal decomposition to uncover dominant low-
rank coherent structures. Here, nonlinear libraries are also constructed
in order to take advantage of the discrete empirical interpolation method
and projection that allows for the approximation of nonlinear terms in
a low-dimensional way. The selected sampling points are shown to be
nearly optimal sensing locations for characterizing the underlying dynam-
ics, stability, and bifurcations of complex systems. The use of empirical
interpolation points and sparse representation facilitate a family of local
reduced-order models for each physical regime, rather than a higher-order
global model, which has the benefit of physical interpretability of energy
transfer between coherent structures. In particular, the discrete interpo-
lation points and nonlinear modal libraries are used for sparse representa-
tion to classify the dynamic bifurcation regime in the complex Ginzburg-
Landau equation. It is shown that nonlinear point measurements are more
effective than linear measurements when sensor noise is present.
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A nuabaTuvdecknii 1Ipeies B ypaBHEHUSIX
MaTeMaTn4ecKoil (pn3nKn

A.T'. Ceprees

MaremaTtudeckuii nuctutyT uMm. B.A.CrekioBa, Poccus
E-mail: sergeev@mi.ras.Tu

PaccmarpuBatorcst 1Ba Bua ypaBHEHHUIl, BOZHUKAIONIUX B MaTeMAaTHYe-
ckoit busuke — 310 ypasuenus ['mu3dbypra—Jlanmay u3 Teopun cBepXIpo-
BOJIMMOCTH, ¥ ypaBHeHUsI 3aiibepra—BuTreHa u3 KBAHTOBON TEOPUU IIOJIS.

Vpasuenus 'mu3bypra—Jlanmay BoO3HHKAOT B (PU3NYECKON MOJIENH,
yIpaBJjsemoit ylarpamkunanom ['ma3dypra—Jlangay. YKasaHHbBIN JarpaH-
JKUaH MMeeT CJIeJy oIl BUI,

A
L(A, @) = [Fal* + [da®]* + T (1 - [@*)?,

rae A obozHavaeT 3JEKTPOMATHUTHBIA BEKTOP-IIOTEHITUAJ, 3aIAI0IIUACs
1-bopmoit A = Aidxy + Asdxs Ha R?xhwz) C DJIAJKUMUA YUCTO MHUMBIMUI
ko3 dunmentamu. BHeIHsIsT TpOU3BOAHAS 3TON (HPOPMBI, UMEIOIIAs BT
FA =dA = Zij:l F”dxl A diCj C KOSCl)(bI/IU;I/IeHTaMI/I Fij = 82A] - ain,
rge 0; = 0/0xj, oTBevYaeT HAIPSKEHHOCTH 3JIEKTPOMAIHUTHOIO IIOJIS,
Tak 4to wien |F4|? copnamaer ¢ marpanmmanom Maxcsema. Ilepemen-
Hast P 3a1aeTcst IIAIKONH KOMILIEKCHO3HAYHOM hyHKImeilr ¢ = O +iP,y Ha

%wl,xz), Ha3blBaeMoll uHade mojeM Xurrca. PU3HIecKH, OHA OIUCHIBAET
CBEPXIIPOBOJSAINEE CKAJSIPHOE I10JI€, B3aUMOEHCTBYIOIIEee C 3JIeKTPoMar-
HUTHBIM 110j1eM. OTBETCTBEHHBIM 3& 9TO B3aUMOJIEHCTBIE sIBJIIETCS JIEH

2
dp® = dP + AD =Y (0; + A;)® dx;.
i=1

Oyuxrnus & MOXKeT HMeTh Hy/IM Ha IIIOCKOCTH, HO Ha OGECKOHETHOCTH
|®| — 1. T'naBuas cuenuduka garpanxuana Jlannay—I un36ypra onpeme-
JISIETCsI IJIEHOM
1 (1=[®[*)?, onnceiBatomum HenmueiiHoe “camozeiicTBre” CKaISPHOTO 110-
as D,

VYkazkeM BHaUasIe, KAaKIM 00pa3oM Bejer cebst ykasaHHas (pU3MIecKast
cucTeMa B CTATHYECKOM CiIydae. e HOTeHIUaIbHAs SHEPIUs 33JaeTCs
MHTErpajioM OT JIarpaizKuaHa 10 IJIocKocTh R? KOTOPYIO yIOGHO

(z1,22)7
OTOXKJIECTBUTH C KOMILTIEKCHO# mockocThio C ¢ KoopauHaToit 2 = x1+1Ts.
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Pemenust mojtein, MUHUMU3UPYONINE TOTEHITUAIBHYIO SHEPTUIO, HA3bIBa~
torca Buxpsamu. Cortacao teopeme TayOca, 1o r000My KOHEIHOMY HAOO-
py ToueK (C KpaTHOCTSIMHU) Ha KOMIUIEKCHOW IIJIOCKOCTU MOXKHO IIOCTDO-
urh Buxpesoe pemenne (A, D), mua koroporo dyukimsa ¢ umeer Hysm
TOJIBKO B 3aJ[@HHBIX TOYKaX W C 3aJIaHHON KpaTHOCThIO. Takum obpa-
30M, IIPOCTPAHCTBO BUXPEBBIX PEIIEHUil C 3a@HHBIM BUXPEBBIM UHCJIOM
N (paBubIM uucay myiaeid ¢ ¢ y4eroM KPaTHOCTH) € TOYHOCTHIO JIO €CTe-
CTBEeHHO! (T.H. KajuGpPOBOYHOM) SKBUBAJEHTHOCTH MOXKHO OTOXKIECTBUTH
€ MHOKeCTBOM HaGopoB u3 N To4ek (€ y4eroM KpaTHOCTH) Ha KOMILIEKC-
HoM 1mockocTr. COHOCTaBIIsisI KaXKJIOMY TakoMy HabOpy KOMILIEKCHBIN
nosmHOM N-it crenern (co crapumm KodbQHUIMEHTOM eIUHUIA), UMERO-
Ui HYJd B 3aJaHHBIX TOYKAX, Mbl BAJWAM, 9TO YKA3aHHOE MHOYXKECTBO
oToXIecTBIseTCs ¢ N-MEPHBIM KOMILTEKCHBIM mpocrpancTsom CV.

B ommume ot crarmdeckoil 3aaum, JIOMYCKAOIIEH, KAK MbI BHUIUM,
IIOJTHOE PEIeHne, PACCIUTHIBATD HA UTO-JIHOO0 MOI0OHOE B JTUHAMIIECKOM
3ajade He mpuxoauTcs. MOXKHO OJHAKO MOJIYIUTH ee IPUOJIMKEHHBIE Pe-
IIEHNsT, NCXO/Is U3 cjieyionieil unen, npunajiexarieir Manrony. Kaxxmoe
pellleHne TMHAMIIECKO 3a1a4u npejicTasisier coboii kpusyto (A(t), O(t))
B npocrpancrse nap (A, ®), 3aJaHHBIX ¢ TOYHOCTHIO JI0 YIIOMSIHYTOH BbI-
e KaJMOPOBOYHON SKBUBAJEHTHOCTU. YIIOOHO MPEJCTABIATH cebe yKa-
3aHHOE POCTPAHCTBO Iap B BHIE ~OBpara’, JHO KOTOPOTO COBIAIAET C
IPOCTPAHCTBOM CTATHUYECKUX PelleHuii (Tak 4rTo KaKias TOYKa Ha J(He
eCTh CTATUIECKOE PEIEHNe), a PellleHne JTUHAMUIECKOH 387891 — B BUJIE
TPAEKTOPHUH MIAPUKa, KATAIOIIErOCs 10 CTeHKaM OBpara. Kcjium yMeHbIIaTh
CKOPOCTh IIAPUKa, TO €r0 TPAEKTOPHUsI OYJIEeT MPUAKUMATHCH K JTHY OBpara
U B IIpeJiesie IPEBPATUTCS B TOUKY Ha jgHe. OIHAKO, €CJIM BBECTH HA KarK-
JI0 TPAEKTOPHUH “MeIJIEHHOE BpeMst’, 3aMe s TeIeHne BPEMEHH TapaJi-
JIETBHO C 3aMeJJIEHNeM IMapuKa, TO B MpeJiesie TAaKUX ~MacCIITabupOoBaH-
HBbIX” TPAEKTOPHIl IOJyYNM y2Ke He TOUKY, & KPUBYIO, JIEXKAIILYIO Ha JIHE
oBpara, KOTopasl siBJISIeTCsl Te0e3MIeCKON ITPOCTPAHCTBA CTATHIECKUX Pe-
IMEeHU OTHOCUTENbHO METPUKH, 3aJaBacMO KMHETUIECKON sHepruei cu-
crembl. KOHEYHO, Takne KPHUBLIE HE MOTYT OBITH PENIEHUSIMU HCXOIHON
JUHAMHUYECKON 3a/1a4M, IIOCKOJIbKY KazK/asd TOYKa Ha TaKOW KPUBOU AB-
JIAeTCd CTaTUYIeCKHUM PEeHIeHUEeM. O,JIHa.KO OHHN HpI/I6J’II/I}K€HHO OIINCBIBAIOT
JIUMHAMAYECKUE PeIleHusi, 0bJIaaonue MaJjioil KHHeTHIEeCKOW IHepruei.
Haxoxieane yka3aHHBIX KPUBBIX CBOJUTCS K PEIIEHUIO ypaBHeHUs Dii-
Jiepa I Te0JIe3MIeCKUX Ha MPOCTPAHCTBE CTATUYIECKUX PEIeHu, Hae-
JIEHHOM KMHETHYECKO# MeTpuKoil. [loBeseHne Takmx reoie3maecKux mo3-
BOJISIET IOJIyYUTh BIIOJIHE KOHKDETHBIE BBIBOJBI O IIOBEJIEHUN PEAJIbHBIX
Buxpeit. Hampumep, MOKHO 1OKa3aTh, YTO JBa BUXPs, IBUKYIIAECS Ha-
BCTpedy JApYyT APYry HO MPSMOii, COeIUHSIONIEN UX IEHTPHI, OCe JT060-
BOT'O COYJIaPEHUS PA3JIETATCS O/ IPSMBIM YTJIOM 10 OTHOIIEHUIO K JIMHUU
JIBUKEHUS.
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Buxpesble ypaBHeHUsi, KaK BBISCHUJIOCh B IIOCJIEIHEE BpPEMsi, TECHO
CB#A3aHBI C ypaBHEHUSMHU 3aiibepra—Burrena, BhI3BABIINME HACTOSAITAN
OyM B TOIMOJIOIMU TIAJIKUX 4-MEPHBIX MHOr0OOpasuii. DTU ypaBHEHUS HE
MHBAPUAHTHBI OTHOCUTEJIBHO M3MEHEHUsl MaciiTaba, MO3ITOMY IS TOrO,
9TOOBI M3BJIE€Yb W3 HUX TIOJE3HYI0 MHMOPMAINIO’ BBOJUTCS IapaMeETP
Macimraba 7, KOTOPBIit 3aTeM ycTpemJsieTcs K 6eckonedHocT. Tay06c 1mo-
Ka3aj, 9TO pelleHne ypaBHeHUil 3aitbepra—Burrena na 4-MepHOM CHM-
IUIEKTHIECKOM MHOT000Da3nu, 3aaBaeMoe Hapoil KOMILIEKCHBIX (DyHK-
i, OyieT BecTu cebst P ITOM cJieaytomuM obpaszom. OgHa u3 yHK-
Ui CTPEMUTCS K TOXK/IECTBEHHOMY HYJIIO, & HYJI JIPYTO# aIlllIPOKCUMUPY-
IOT HEKOTOPYIO I€Ilb, COCTABJIEHHYIO U3 IICEBIOr0IOMOPGMHBIX KPUBLIX Cl
¢ KparHocTsaMu My (1eeBIorooMopdHOCTh IIOHUMAETCH OTHOCHTEIHHO
KOMIIJIEKCHOI CTPYKTYPBI, COBMECTUMOII C CUMIIEKTHYIECKON CTPYKTYPOH
MHOroo6pasus). OJHOBpeMEeHHO UCXoHOe ypaBHeHue Jaiibepra—Burrena
PelyIupyeTcs K CeMeHCTBY BUXPEBBIX YPABHEHUIl, 33/JAHHBIX B KOMILIEKC-
HBIX IIJIOCKOCTSIX, HOpMaJbHBIX K KpuBbiM C}. Ob6paTHO, Il TOTrO, 4TO-
OBl MOXKHO OBLIO BOCCTAHOBUTH pellleHue ypaBHeHuit 3aiibepra—Burrena
o tenu Y . myCk, CeMeHCTBO BUXPEBBIX PEINEHUil B HOPMAJILHBIX ILIOCKO-
CTSIX JIOJIZKHO yIOBJIETBOPSITH HEJTHHEHHOMY O-yPABHEHHIO, KOTOPOE MOZK-
HO PACCMATPUBATDH KaK KOMILJIEKCHBIN aHAJIOT ypaBHEeHUsT Diljiepa JiJisi reo-
JIE3UIECKUX C "KOMIIJIEKCHBIM BpeMeHeM' .

91



ARMENIAN MATHEMATICAL UNION ANNUAL SESSION 2015

Degenerate nonselfadjoint high-order
ordinary differential equations on an infinite
interval

L. Tepoyan, S. Zschorn

Yerevan State University, Armenia
E-mail: tepoyan@yahoo.com, svetal985@inbox.Tu

We consider the Dirichlet problem for degenerate ordinary differential
equations of the form

Lu = (=1)™(t%u™) ™) 4 q(—1)mL ety 4 opiBy = £ (1)

where m € Nyt € (1,4+00),a #1,3,...,2m — 1, 8 < o — 2m, a and p are
real constants and f € Ly, _5(1,400). Let W™ (1, +00) be the completion
of C™ := {u € C™[1, +00),u™ (1) = u®) (+00) = 0,k =0,1,...,m — 1}
in the norm ul% ., = [ t*[u(™(#)[2dt. For B < a — 2m there is a

continuous embedding W/™(1, +-00) <+ La (1, +00), which is compact for
B < a—2m.

A function u € W/ (1, +00) is called generalized solution of Dirichlet
problem for (1) if for every v € W/(1, +00) holds the equality

tu™ ™) 4 (1™ (MDY 4op(tPu,v) = (f,0).
 Let d(m,a) =47 (a —1)*(a — 3)?--- (a — (2m — 1)). Then for u €
W™ (1, 400) we have exact inequality
+oo +oo
/ 72 (4) 2 dt < d(m, «) / £ |u™ (1) ]2 dt.
1 1
Theorem 1. Let the following condition be fulfilled
ala —1) > 0,d(m, o) + %(a —dim—1,a—-2)+p>0 (2

Then equation (1) has a unique solution for every f € Lo _g(1,+00).

We have an operator L : Ly g(1,400) = Lo _g(1,400). Denote L :=
t=PL,D(L) = D(L). The operator L™! acts in the space Ls g(1,+00), is
continuous for 8 < a — 2m and compact for 8 < o — 2m.

Now consider conjugate to (1) equation

Sv = (—1)™ (™)) — g(—1)m e tym=Ym) LBy = g0 (3)
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We say that v € L g(1,400) is a solution of (3) for g € Lo _g(1,+00)
if for every u € D(L) holds the equality (Lu,v) = (u,g). Observe, that if
the condition (2) is fulfilled then the generalized solution of the equation
(3) exists and is unique for every g € Lo _g(1,+00). Notice also that
L* =S, where S :=t=#5, D(S) = D(S).

Proposition 1. The spectra of operators L and S lie on the right half-
space.

Consider the selfadjoint differential equation
Lu = (=1)"(t*u"™) "™ 4 pt " u = f, f € Lo am(1,+00),a > 0. (4)

Theorem 2. The domain of definition of the operator L consists of func-
tions u € W (1,+00), for which the value u(™V(+00) is finite for
%<a< 1, and for2m —2k -2 <a<2m—-2k—-1,k=0,1,...,m—2,
the values u™®) (+00) also are finite.

Also, notice that the values u(®) (+o00), k = 0,1,...,m — 1 cannot be
given arbitrarily, they are defined by the right-hand side of the equation

(4) (see [1]).
References

[1] A.A. Dezin, “Degenerate operator equations”, Math. USSR Sbornik,
vol. 43, no. 3, 287 — 298 (1982).

[2] L.P. Tepoyan, “Degenerate differential-operator equations on infinite
intervals”, Journal of Mathematical Sciences, vol. 189, no. 1, 164 —
172 (2013).

[3] S. Zschorn, “Nonselfadjoint degenerate differential operator equa-
tions of higher order on infinite interval”, Proceedings of the YSU,
Physical and Mathematical Sciences, no. 2, 39 — 45 (2014).

[4] L. Tepoyan, S. Zschorn, “Degenerate nonselfadjoint high-order ordi-
nary differential equations on an infinite interval”, Journal of Con-
temporary Mathematical Analysis, vol. 50, no. 3, 107 — 113 (2015).

93



ARMENIAN MATHEMATICAL UNION ANNUAL SESSION 2015

Gauge Theory in the Studies of the
Economic Dynamics

L.G. Badalian, V.F. Krivorotov

University of London, United Kingdom
E-mail: 4112lucy@gmail.com

Introduction

1.

Gauges and how to use them in and outside of physics.

Gauges are the basic measuring functions used generically for ob-
servation purposes.

The main idea - a variable is presented as a parametric vector in
the base space of e; ‘
Y = Y’ei (].)

The Gaussian gauge is among popular examples used in the pat-

tern recognition
(@0 —w;)>

ol 2)

In the most generic sense, it represents a non-linear function of distance.
Gauges were first developed in Physics:

2.

As settings for focusing equations to assure adequate group of
transformations.

Aiming to focus on the signal by filtering out the white noise. In
pattern recognition this contributes to separability - the ability to
distinguish processed images as true positives while avoiding mixing
them with false positives.

Compensation for nonlinearity, assuring linearization and in-
variant measurement. Technically, invariance of vector in a gauge
basis equals to finding the extremum for a functional.

Y =Y, (3)

since

oY =0 (4)
which is the necessary condition for equilibrium.
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The equilibrium means a mutual compensation of all extant flows at a
given point as the precondition for the very existence of an invariant sys-
tem of measurement. The latter is necessary both for experiment repro-
ducibility and the very ability to measure.

3. Repurposing gauges for the economics.

e Conditions for gauging. Let’s assume that the vector of supply
Y can be gauged through base demand e;

e The equilibrium hypothesis. (4) is the mathematical representa-
tion of the general equilibrium, achievable by varying prices. This is
the main issue of the classical economics and the bone of contention
between warring econ. schools.

e Conditions for clearing all the flows at each and every point of
sale can be derived from (4) and rewritten as

(SY’L - (5ei

Y B €;

, Yie; = mazx. (5)

This means that any increase in supply must be compensated by a corre-
sponding increase in demand by varying prices at the point of sale [1].

From Theoretical considerations to Real Equa-
tions

Assuming x = 2(t), * = {20 2',..., 2V}, 20 = ¢, 0 < i < N the ex-
tremum for the functional (3) can be written as Y* = Y* (z) , ey = ey, (),
0 < k < K. Differentiation brings us to d (Ykek) =0 and we get

8Y’“ 6ekyk i aY’“ 86i YZ i
o e )T TG e | T

oY’k A .

Assuming the independence of base vectors ey’ we get the equations of
parallel transport [5, 262]

oVt +Thy?t| =0 (Y’“ + r’.“.;i:jYi) =0 (7)
8.17] 1) - 1) -
where, by definition,
de; Oe; Oe;
g, _ Y¢ m, k_ Y% k k _ Y€ i
Pier = gg Tieme™ =53¢ T4 = g5¢ ®)

are the connections or Christoffel’s symbols [5, 256]
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Gauges - popular systems and simple exam-
ples

Exponential functions e*%#, where ¢ (z,t) is the cumulate, x - is the growth
factor, t - time.

Exponents e; = e*%i, o; (2,t) = /V,; (z,,t) dt.

The base equations are produced by gauging e; = e~%%, p; = / v; (z,&,t) dt,

6€i 0 0 a
= —ﬁékek. Assuming (8), we get I'f; = — Ld

dxd ~  Oxi ° Oz

0
acpj. Substituting I'y; in (7) we obtain simple base equa-
x

considering 0%, with

62—
non-zero I'y; =
tions

Y, &paya

: y — Y — Y = = — Wa)-
50t Do 0, Vo 0, Vo = (ko — wq) (9)

0pa 0pa - 0pa

Since J:O = t, ka = (kal,...,ka]\[), %: kaiy le # 0’ or axo = at =

wq for the case of 1 = 0.

Using Gauges for the Neoclassical Economics

Identifying the utility with cumulate ¢, (x, t) of the growth rates ¢, (z, &,t) =
Vo Of the gross product Y in the industry « of (9), let’s consider labor

L, capital K and technological progress A as factor-productivities in a
single industry model, with no direct relationship to time. Then the last
equation in (9) can be rewritten as

v = ki, v(z,&) = (Vp, 1) (10)

where x = (L, K, A) and k is the vector of marginal utilities for factors
L K, A.

a 1
L'K A
presses the contention that the factor-productivities L, K, A obey the Ri-
cardian Law of Diminishing Returns [2]. Following Solow [6] the techno-
logical progress is assumed a residual A weighted to unity in regards to the
growth rates of the gross product explained through factor-productivities
of labor and capital. According to (10) we obtain Cobb-Douglas formula
mathematically, whereas they were found empirically [4]. This points at
a deeper meaning of this formula as perhaps representing the fundamen-
tal nature of the Law of Diminishing Returns, which was used to derive

Cobb-Douglas function. We assume Vo = k = , to ex-
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formula and equations (11)

L K A )
v (K,L, A) = a— +5K+A, Y =Y, Y = AL*K®  (11)

The Solow model adds to the Cobb-Douglas function yet another equa-
tion, namely, the capital self-reproduction K = sY — § K from where we

Y
get vi (K,Y) = s——0.

K
The marginal utility of capital generation as a factor productivity GSDY
d(InK)
s /
d(InY)

0
The marginal self-correction of capital as a factor productivity % =

—§/K.
Accordingly the Solow model can be rewritten as

Y = l/y}/7 K = VKK. (12)

This brings us to equations tracing the phase gradients for factor produc-
tivities.

Gauges in the Monetary Economy, the ”In-
visible” Hand

The equations for self-regulating markets. We use equations based
on (9)—(10), where Y-is the GDP, M is the monetary mass, which mutu-
ally interplay to achieve equilibrium

dey (Y, M) don (Y, M)

Y:VYY, M:VMM) vy = dt ) Vg = dt

(13)

Similar to the case of neoclassics, we build full derivatives of phases
»y, ©m, using partial derivatives as in the second equation of (10) i.e.
(Ve, ). Marginal utilities for factors Y and M are shown below [3].
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Doy Y ' . :
——=h|1—-——==]/Y Marginal self-generation of the gross

product assumed equal to diminishing
returns per unit of growth

Dy M . :

Fii —i/ Vi Marginal correction of the gross pro-
-duct through the monetary mass,
which are in inverse relationship
to the latter’s growth rates

dpm Y . .

Y af v Marginal generation of the monetary
mass through the supply of the real
product is inversely proportional to
its growth rates

dpm M . .

e —e/ i Marginal self-correction of the monetary

mass inversely proportional to the
growth rates.
Substituting marginal utilities expressed through phases ¢y, @i above
into full derivatives vy, vy we obtain the equations of market’s self-
regulation (14) for ¢y, oum

. Y , :
Y:Y(h(l—cc> —1M>, M =M (aY —eM),

Y
yy:h(l—cc> —iM, vy =aY —ecM. (14)

Conclusion: by using gauges we demonstrated that self-regulation is a
feature of a closed system. This creates a fundamental paradox since any
closed system is devoid of sources of growth by definition.
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Wdpnng pyh Gtpluyugnip hpwphg qupptip
pbwlub pyYbph m-pn wuphdwbttph gnudwpbtiph b

nunpbpnipynibitph ptupny
WU. UhLU3GL3UWL

Uppenipjul Ugquyhl bOugphypnup

Unyb wphuwnpuilipp gptiym suipdwnhpp «2J4WLS» wduwgph phy 2328 upl-
nhpb L:

lwinhp 1. Sawpwynp b jnipwpwisymp wdpnne phy Lhpluywgil)
wlpnng pfkph punpuloupnilph gnolwph pkupny, npnig dkp ghaki
hwijwuwn pibp:

fubnhp 1-h pinhwipugyudnp Yihoh.

vunhp 1*. Snipwpwisynip wilpnng phy hhiwpwynp b obpluwywglby
hnwphg pwpphp plwlui pfbpp m-pnp wwphdwhibph gnidwphbpp
U ypwppbpnggnibibbph pnhupny:

hounhp 1*¥*. Snipwpwisynip widpnng phy hhiwpwiynp E abpluywgily
hnuwphg puppbp wilpnng pyliph m-pn wuppiwbilph gnofwph phu—
pny, npaphn m-p Yhinp plwlwi ppf F(m = 3 nhwypenid upuwbhwip
pulinpp 1-p):

lotnhp 1#-h (monudp wypugynmd £ htplyw thwugphg.

Lddw. “pagnip m-p 1-pg UL phwlwis phy E puly co-0 wylwpup
planlpuis phy £ np (1) hwjwuwpnonip nibh winfbpe pyny

er1a +eqxh + ...+ epal’ = co (1)

(z1,22,...,28) = (Q1n, 0o, .., Qgn) (uOmdllp, npphny &; € {—1;1},

k € N, pulf a;, (1=1,2,...,k), n € N phawlpuic pbpp dptpuighg

wpwppbp Gh: Qm nhypnid jnipwpwisymp widpnne phy hiiwpwynp k

Lbplpuywglly hpwphg pwppbp phwlud pfbpp m-pn wuphdwiibph

gnidwpliliph ni pwppbpngemilibph pbupny: Can npnid, jrupwpul—

gmup wdpnng pyh hwlwp wnyhup epluwjwgnidbbph whbpe Li:
Uwhdwinmd.

Ay, (zp) = A5 (2,p) = A (20— 2771,

npuplin 1 <s<m,p>2"1 m,p,seN, z €R:

A2 (x,p) bpym thmhnpuwuih $mayghwd juijudkbp 2° hug bplub-
nuittph’ z+p, z+p—1, ..., z+p— (2% — 1) m-pn wuphSwbbtiph pup-
ptpmpgmbdtph puquubnud: Wy Ghpy wawd” A$, (2, p)-p 2° hwenprujub
tipuinwdttiph m-py wuphwotph’ (z+p)™, (x+p—-1)", ..., (z+p—
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27", (e +p— (2271 = 1)), (z+p— (2° — 1)) wnwghl b tpypnpn
25~ quljiiiph Gwhunpn puppbpniggmbbbph pupptpmpmah t:

AY (z,p) puquuinudh hhdbwwd hwpynipymap
Nunpynipymb. A7 (z,p) = 25 ) = co:

Jbpgbtiny z =n € Nu p = 2™ — 1, jupubwip k& = 2™ hwenpnujub
plwluwb pytiph m-pn wuphSwbdbp’ 27 = (n + 2™ — 1) 25" = (n + 2™ —
=2)" Ll =m+2)" 2 = (n+1)", 2 = n™, npnip Ypujw-
nuptb (1) hojuwuwpdwin ez +e025 + - - +epal’ = Al (n, 2" — 1) =
25 = o, Vn € N: Swiwyupuupiwb g; € {1; -1}, i =1,2,... k=
2™ Ynpnpytb htiplywy upgny (3 = 1 Jud &7 = —1 Ygpbbp hwdwwyuw-—
puuhiwbwpwp «+» b «-» Dpwbibpny):

Lunhwipuybu 2™ -juyh bpwbbtpp Ynpnpytd A7 — (Aﬁj) — (Azj)
winpununéd puwbwatny: wbnhp 1#-h mdnudip wjupgptm hwdwp domyd &
oqyty (tudwjhg: Uwljuyh pubnhp 1-h modwb hwdwp npytu ¢g Juipbgh
Jtipght hbsytu ¢g = 2, k = 3, wyhwtiu i ¢g = 1, k¥ = 3 : Unwohh nbiygpmd
utilp Juypubwbp xi’ + ;v% + $§ = 22 + 4% + 2> = 2 hwjwuwpmyp, nph
hunfwip hpwiphg puppbip wiytpe pyny unipnne (mdmubtp ihtkh, ophiuly
z=6n+1y=1-6n 2 =—6n2 tinyuibpp, nppin n € Z L n # 0 :
Ephpnpn ntwpnid 22 4+ 32 + 22 = 1 hwjuuwpiwh hwdwp 2 = 9n?, y =
1-9n3, z=3n —9n* n #0, n € Z tinjuljitipp:

futinhp 1-p U NFnphbgh wpnpidp

1770p.-ht whghwgh vwpttuphynu Enmuwpn Minphtgp (Mwphiig) wphg
htiplyw) Ghpwnpnipnibp.

Snipupwbginip m > 1 ptmub pyh hwdwp gnympymb nbh wybuyhuh
k = k (m) pbwywb phy, nph nphiypmyd VM € N phy Jupbih E obpluyugbt &
hunp ng puguuwlub wnipnne pytph m-pn wuph§wbitph gndwph phupny
MZJ){”"‘J)%”‘F‘FJ??, x; € Np:

Uwulwynpuutiu MinphOgh fuinpnud m = 2 nhwpmy jugqugnyl kg =
k(2) = 4, wyuw hutnhp 1*-my m = 2 nhypmy bjuqugnyt kg (2) = 3-0 L,
huyj m = 3-h hwdwp ko (3) = 9, dhtgntin pubnhp 1*#*-md m = 3-h hwdwp
ko (3) < T:

hounhp 2. Snpwpwisynip wilpnne phy hiuwpwynp b hbpluwywghly 7
hpwphg pupphp widpnng pybph pnpulwpnikph grdwpp pkupny:

s—s3 3 s —s° 3 s—s3\°
, _ _ _
= 1 -1
55+<6+>+(6 >+(6>+
_3\3 3\ 3
+(8-8 68> +<9-8 6,8) +(s—s%)°




Gpp s € {0; —1; 1}, wqu s = 53 4+ 28 + (—2)° + 33 4+ (=3)° + 43 + (—4)*:
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