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a b s t r a c t

We consider the problem of query based algorithmic identification/recognition of mono-
tone Boolean functions, as well as of binary functions defined on multi-valued discrete
grids. Hansel’s chain-split technique of n-cubes is a well known effective tool of mono-
tone Boolean recognition. An extension by Alekseev is already applied to the grid case. The
practical monotone recognition on n-cubes is provided by the so called chain-computation
algorithms that is not extended to the case of multi-valued grids. We propose a novel split
construction based on partitioning the grid into sub-grids and into discrete structures that
are isomorphic to binary cubes. Monotonicity in a multi-valued grid implies monotonicity
in all induced binary cubes and in multi-valued sub-grids. Applying Hansel’s technique for
identification ofmonotone Boolean functions on all appearing binary cubes, and Alekseev’s
algorithm on all sub-grids leads to different scenarios of reconstruction of monotone func-
tions. On one hand such partitioning technique makes parallel recognition possible, on the
other hand — the method can be used in practical identification algorithms due to sim-
ple structures and easily calculable quantities appearing after the partition to the n-cubes.
Complexity issues of considered algorithms were also elaborated.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

Monotone Boolean functions appear in various ICT applications, such as design of electronic schemes, pattern recognition,
discrete optimization, cryptography and others [2,6,21]. Monotone Boolean functions are studied from different viewpoints
and they are known as a type of high complexity objects [13,11,14,15,18–20]. Often researchers link this complexity to the
Sperner families of partially ordered sets of elements [8]. As a rule, the problem is considered in specific posets — such as
the binary cube, and the multi-valued multidimensional grid. A number of results in the domain of structural optimization
of monotone Boolean functions and their recognition are obtained by G. Hansel, V. Korobkov, A. Korshunov, G. Tonoyan, N.
Zolotykh, V. Alekseev, A. Serjantov and others [11,1,14–16,23,27,24–26].

The exact recognition algorithm, optimal for the n-cube and in the sense of the Shannon complexity criterion, is given by
G. Hansel in [11]. The algorithm is based on partitions of the n-dimensional binary cube into disjoint chains, that is effective
and very much transparent and understandable. A direct generalization of Hansel’s approach to the multi-valued case is
obtained by V. Alekseev in [1]. For one particular sub-case this result is improved in [23].

As an example consider an applied problem that can use monotone recognition.
Assume we are given a set of m linear inequalities, A · X ≤ B on the set of variables X = (x1, x2, . . . , xn). In general, this

system can be inconsistent. The problem is to find algorithmically one or all maximal consistent subsets of inequalities. If to
observe that a subset of a consistent set of inequalities is consistent, and if to code the involvement of individual inequalities
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Fig. 1. Hasse diagram of Ξ 3
5 , circles correspond to vertices.

into the subsystem under consideration by binary vectors, we get a monotone Boolean function, such that zero values of the
function represent all consistent subsets of the system of inequalities. The maximal consistent sets correspond to the upper
zeros of the monotone Boolean function.

Other typical applications appear in data mining area [22], where frequent sets of items compose monotone Boolean
functions. This is for the case of market basket analysis. If to take into consideration the item quantities in the basket, then
we obtain the same problem on multi-valued grids.

In this paper we consider a novel algorithmic resource for elaboration and identification of monotone functions defined
on multi-valued grids. We propose a principally new approach based on partitioning of grids into non-intersecting discrete
structures, that are isomorphic to binary cubes. Monotonicity of a function in the multi-valued grid implies monotonicity
in all induced binary cubes. Monotonicity is retained also in induced multi-valued sub-grids. Hence, applying Hansel’s
method (and its extensions) for identification of monotone functions in all induced binary cubes and in sub-grids, and then
integrating the results, leads to an alternative way of reconstruction of monotone functions defined on the multi-valued
grids. The method can be used in practical algorithms of identification due to simple structures and easily calculable
quantities in the n-cubes. In a general characterization, the new approach provides a binary cube partition technique vs.
the chain partition technique used so far.

Let Ξm+1 = {0, 1, . . . ,m} and Ξ n
m+1 denote the set of vertices of the n-dimensional (m+ 1)-valued discrete grid defined

as:

Ξ n
m+1 = {(a1, . . . , an) : ai ∈ Ξm+1 for all i ∈ 1, n = {1, 2, . . . , n}}.

We place a component-wise partial order on Ξ n
m+1 : (a1, . . . , an) ≤ (b1, . . . , bn) if and only if ai ≤ bi for all i ∈ 1, n;

and define the rank of an element (a1, . . . , an) as: a1 + · · · + an. Then, Ξ n
m+1 is a ranked partially ordered set. Consider the

geometric representation of Ξ n
m+1 through the Hasse diagram. The diagram has m · n + 1 levels, numbered from 0 (lower

level) tom · n; the kth level contains all vertices at rank k. Edges connect those vertices in neighbor levels related by a cover
relation. Let us demonstrate the Hasse diagram of Ξ 3

5 (see Fig. 1).
Consider a binary function f : Ξ n

m+1 → {0, 1}. We say that f is monotone if for any two vertices a, b ∈ Ξ n
m+1, if

a > b then f (a) ≥ f (b). For m = 1 we get monotone Boolean functions defined on the n-dimensional unit cube
En

= {(x1, . . . , xn) : xi ∈ {0, 1} for all i ∈ 1, n}.
a1 ∈ Ξ n

m+1 is a lower unit of somemonotone function f if f (a1) = 1, and f (a) = 0 for every a ∈ Ξ n
m+1, which is less than

a1. a0 ∈ Ξ n
m+1 is an upper zero ofmonotone function f if f (a0) = 0, and f (a) = 1 for every a ∈ Ξ n

m+1, which is greater than a0.
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Fig. 2. Highlighted vertices are units of the function in the example.

We denote by M(n,m) the set of all monotone functions defined in Ξ n
m+1. Consider an example: f is given in Ξ 3

5 in the
following way:
{(4, 4, 4),
(4, 4, 3), (4, 3, 4), (3, 4, 4),
(4, 3, 3), (4, 2, 4), (3, 3, 4), (2, 4, 4)
(4, 2, 3), (4, 1, 4), (3, 2, 4), (2, 3, 4), (1, 4, 4),
(4, 1, 3), (4, 0, 4), (2, 2, 4), (1, 3, 4),
(4, 0, 3), (1, 2, 4)}
is the set of units of f , and the rest of the vertices of Ξ n

m+1 is the set of zeros of f . f is monotone, and {(4, 0, 3), (1, 2, 4)} is
the set of its lower units. Let us illustrate this function on Hasse diagram (see Fig. 2).

Let f be an arbitrary binary function defined with the help of a certain operator (also called an oracle) such that receiving
any vertex a of Ξ n

m+1, the oracle gives f (a), the value of the function. If there is no a-priori information about the function
then (m+ 1)n accesses to the oracle are needed for identification of the function. If some property of the function is known
then it may not be needed to access to the oracle for all vertices of the cube. For example, if f ∈ M(n,m), then f (a) = 1
for some vertex a ∈ Ξ n

m+1 implies f (b) = 1 for all b > a. All algorithms of identification of monotone Boolean functions
differ from each other by the set of vertices presented to the oracle, and by the method of selecting vertices and diffusing
their values to other vertices. The problem is in identification of the function by as far as possible small number of accesses
to the oracle. In this context our approach divides the vertex selection process into subprocesses, by partitioning Ξ n

m+1 into
sub-grids and binary n-cubes.

The paper is organized as follows: a brief overview of existing results on monotone recognition is given in Section 2.
In Section 3 we introduce a method for decomposition of Ξ n

m+1 into structures isomorphic to binary cubes, such that mono-
tonicity inΞ n

m+1 impliesmonotonicity in all induced binary cubes. Section 4 concerns the problem of identification ofmono-
tone functions based on the decomposition of Ξ n

m+1. The complexity of the considered algorithms was studied. Section 5
brings concluding remarks.

2. Current state/overview

Let A be an algorithm of identification of monotone Boolean functions defined on n-dimensional unit cube En. Let φA(f )
denote the minimal number of accesses to the oracle which is sufficient to identify a given function f by the algorithm A.
The oracle, by an input vertex α returns the value f (α). φA(n) denotes the minimal number of accesses to the oracle which
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is sufficient to identify an arbitrary monotone Boolean function of n variables by A. Then, φ(n) = minφA(n), where the
minimum is over all algorithms of identification of monotone Boolean functions. Note that we will use similar definitions
and notations for the multi-valued case of functions.

For φ(n) several lower and upper bounds are obtained in [14] first. The complete solution for binary cubes is obtained
by G. Hansel in [11]. In particular, it is known that

Theorem 1 ([11]). φ(n) = C⌊n/2⌋
n + C⌊n/2⌋+1

n .

To prove the upper bound in [11] an algorithm is constructed based on a partition of the cube into special disjoint chains.
Chains are interrelated by a property of ‘‘vertex complement’’ — when 3 sequential vertices have their complement in a
shorter chain in the partition. The algorithm is simple and elegant, however it uses memory for keeping all vertices of En by
the set of these chains.

In a formal description, a chain in En is a sequence of vertices, α1 < α2 < · · · < αt , t denotes the length of the chain (we
consider increasing chains). The chain is continuous if for each αi < αi+1 there is no α ∈ En such that αi < α < αi+1. The set
of all vertices of En can be organized as a special set of continuous chains, known as Hansel chains. The chains are disjoint,
and the number of these chains is equal to C⌊n/2⌋

n . The number of the chains of length n−2p+1 is Cp
n −Cp−1

n , 0 ≤ p ≤ C⌊n/2⌋
n .

And finally, if α1 < α2 < α3 is a continuous fragment of some chain of length n − 2p + 1, then the relative complement to
α2 in the 2-dimensional subcube [α1, α3] belongs to the chain of length n − 2p − 1. These properties of the Hansel chains
compose the base of the Hansel’s algorithm. The algorithm starts with the vertices of the chains of minimal length. In a
recursive manner, the values of the function f on the chains of length n − 2p − 1 is diffused by monotonicity to the larger
chains. In this way, at most 2 vertices of chains of length n− 2p+ 1 may remind undetermined and this provides the upper
estimate in Theorem 1.

A similar algorithm but with minimal use of memory is developed by G. Tonoyan in [26]. Here a special algebra is
developed that helps to compute the next vertex to be presented to the oracle. The algorithm receives as input not the
chains themselves but the information accumulated by the algorithm (vertex set) about the function under recognition.

An algorithm that is optimal with respect to the number of accesses to the oracle, as well as the usedmemory is obtained
later on also by N. Sokolov [24,25].

The problemof identification ofmonotone functions for themulti-valued case is investigated by V. Korobkov, V. Alekseev,
A. Serjantov, and others [14,1,23].

An extension of the model of monotone function recognition is considered in [14] by V. Korobkov. He considered the
Cartesian degree of an arbitrary finite partially ordered set R, and functions, accepting values 0, 1. Let φR(n) denote the
minimal number of accesses to the oracle for identification of these functions. The following estimate is formulated by V.
Korobkov.

Theorem 2 ([14]).

C1(R)
|R|n
√
n

≤ φR(n) ≤ C2(R)
|R|n
√
n

, (2.1)

where C1(R) and C2(R) are constants depending on R.

We will specify this result for a particular case in Section 4.
In [1] an algorithm U0 (generalization of Hansel’s algorithm) is constructed by V. Alekseev for identification of monotone

binary functions defined on the grid Ξk1k2...kn = Ξk1 × Ξk2 · · · × Ξkn , where Ξki = {0, 1, . . . , (ki − 1)}.

Theorem 3 ([1]).

t(U0)

t(Uopt)
≤

1
2
⌈log2(k − 1)⌉,

where t(U0) is the complexity of the algorithm U0 and t(Uopt) is the complexity of an optimal algorithm Uopt , and k = maxki.

Let M and N denote the sets of vertices of middle levels of the grid,
defined as:

M =


(a1, . . . , an) ∈ Ξk1 × Ξk2 · · · × Ξkn |a1 + · · · + an =


1
2

n
i=1

(ki − 1)


,

N =


(a1, . . . , an) ∈ Ξk1 × Ξk2 · · · × Ξkn |a1 + · · · + an =


1
2

n
i=1

(ki − 1)


+ 1


.

It is known also [1] that

t(Uopt) ≥ |M| + |N|
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and

t(U0) ≤ |M| + ⌊log2k⌋ · |N|.

Thus, the complexity of Alekseev’s algorithm for monotone functions defined on Ξ n
m+1 is:

t(U0) ≤ |M ′
| + ⌊log2(m + 1)⌋ · |N ′

|,

where

M ′
=


(a1, . . . , an) ∈ Ξ n

m+1|a1 + · · · + an =

m · n
2


,

N ′
=


(a1, . . . , an) ∈ Ξ n

m+1|a1 + · · · + an =

m · n
2


+ 1


.

The notion of cardinalities of twomiddle levels is unclear and this description passes from publication to publication. Below
in Section 4 we will bring clarifications. On the one hand, formulas for the cardinalities of the middle levels of the grid can
be brought out by the help of [17,12,3,4], where a formula for the number of ordered partitions of the given integer into the
given number of parts, each of size at least 0 but no larger than the given size, is introduced. From the other — we will use
the technique of [14,27] deepening this result for a particular case. Combining these analyses, at least in an asymptotic for
large n,m yields a simple and closed-form expression for complexities of the recognition (cardinalities ofM and N).

3. On a special decomposition of the multi-valued cube

The section introduces a split technique and a special decomposition ofΞ n
m+1 through the structures, isomorphic to binary

cubes. Our global challenge is in designing the effective constructions inΞ n
m+1 that serve the needs ofmodeling ofmonotone

relationships and their recognition tasks. Similar studies for binary cubes were started by R. Dedekind, E. Gilbert and others
a century ago (see [14]). The major result that solves part of the basic issues is obtained by G. Hansel [11] who invented a
perfect partitioning of En into the set of ‘‘complementary’’ chains (chain-split). In this context we introduce a technique of
partitioningΞ n

m+1 into a set of non-intersecting binary cubes. Wewill call it cube-split technique. In this manner, the known
effective constructions designed so far for the unit cube domain, can be transferred through the cube-split technique to the
area of Ξ n

m+1. In fact, for structuring Ξ n
m+1 there are two perspectives:

(1) to develop G. Hansel type chain-splitting algorithms for Ξ n
m+1, and

(2) to reduce constructions for Ξ n
m+1 to the binary cube domain and structures, and then use existing approaches for this

domain.
The main achievement in (1) is by V. Alekseev [1] who introduced a proper Hansel type chain-split but these chains

are specific, and they use long collinear segments (the case of sequential increase of the same component) that lead to the
increase of algorithmic complexities. If to construct such chains but with an additional ‘‘zigzag’’ property, then the minimal
asymptotic algorithmic complexity of monotone recognition will be achieved. In [23] chains with no collinear paths were
constructed for one particular sub-case. In this section we will apply the cube-split technique, which is really effective and
moves (2) ahead. On a theoretical level this provides the splitting of Ξ n

m+1 recursively into smaller domains of the same
type objects — multidimensional multi-valued grids (grid type partition), and then into binary cubes and chains of smaller
sizes. On a practical level of recursion it is important that the cube-split level makes the transfer of effective tools of chain
computations [26,5] into the domain of grid computations possible.

The main problem in this domain is that in real size applications it becomes hard to provide the necessary computations
over Ξ n

m+1. At least, it is even hard to keep all the set of chain information in memories despite these chains and their
algorithms are very effective froma theoretical point of view. In case of binary spaces the problem is solved by computational
algebras [26]. Having no such constructions and algebras for Ξ n

m+1, the cube-split reduction can be an effective way of
transferring the power of cube–chain-algebras into the Ξ n

m+1 area.
Before introducing the special decomposition of grids we first bring some necessary concepts, and distinguish several

classes of vertices in Ξ n
m+1.

Middle vertices.
mmid+ = (⌈m/2⌉, . . . , ⌈m/2⌉) and mmid− = (⌊m/2⌋, . . . , ⌊m/2⌋) we call middle vertices of Ξ n

m+1. These are exactly the
geometric ‘‘centers’’ of the structure Ξ n

m+1. It is obvious that these two vertices coincide for evenm.
Upper vertices, lower vertices. A vertex (a1, . . . , an) of Ξ n

m+1 is called upper vertex if (a1, . . . , an) ≥ mmid+. A vertex
(a1, . . . , an) of Ξ n

m+1 is called lower vertex if (a1, . . . , an) ≤ mmid−. Ĥ and Ȟ denote the sets of all upper and lower vertices,
respectively.

|Ĥ| = |Ȟ| = ((m + 1)/2)n for odd m.

|Ĥ| = |Ȟ| = (m/2 + 1)n for even m.

Fig. 3 maps the sets Ĥ and Ȟ in Ξ 3
5 .
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Fig. 3. The set of highlighted vertices composes Ĥ and Ȟ , where the darker part together with the vertex 222 composes Ĥ , and the lighter part with the
vertex 222 composes Ȟ .

V -equivalence.
Vertices (a1, . . . , an) and (b1, . . . , bn) of Ξ n

m+1 are vertically equivalent if ai ∈ {bi,m − bi} for 1 ≤ i ≤ n. V (a) denotes the
V -equivalence class of a vertex a. In V (a) we distinguish two vertices â and ǎ, with components defined as follows:

âi =


ai, if ai ≥ mmid+
m − ai, if ai < mmid−

ǎi =


m − ai, if ai > mmid+
ai, if ai ≤ mmid−.

These are the only vertices of V (a) that belong to Ĥ and Ȟ , respectively. Thus all vertices of V (a) can be constructed from
the upper and/or lower elements (similarly, from an arbitrary vertex) of V (a) inverting (with respect to m) all groups of
components. It is evident that the V-equivalence classes of different vertices of Ĥ (Ȟ) are disjoint.

This provides a complete partition of Ξ n
m+1 into |Ĥ| equivalence classes, which are uniquely defined by elements of Ĥ .

For a given a ∈ Ξ n
m+1 consider an integer defined as k = |{ai|ai ≠ (m − ai)}| (k = n for odd m). Then |V (a)| = 2k. We

identify each vertex of V (a)with α, a binary sequence of length n, such that αi = 1 if and only if ai = âi. In this manner, V (a)
becomes isomorphic to the k-dimensional binary cube Ek: the 0th level of Ek contains the lower vertex of V (a) belonging to
Ȟ; the ith level consists of all vertices of V (a) obtained from the lower vertex by applying i number of component inversions.
Thus Ξ n

m+1 is partitioned into |Ĥ| disjoint classes — that are identical by structure to binary cubes. This partitioning of Ξ n
m+1

we will refer as cube type partition. Fig. 4 illustrates the equivalence classes of points (3, 4, 3), (2, 3, 4) and (4, 2, 2) in Ξ 3
5 .

It is worth to mention that in the usual chain-split (as is the partition of the binary cube in [11]), vertices in each chain
are arranged ‘‘continuously’’, level by level in the mother space, whereas in this case, in case of cube-split, edges of cubes
connect, in general, vertices that do not belong to the neighbor levels of Ξ n

m+1.
In case of oddmweobtain ((m+1)/2)nV -equivalence classes, and every class/binary-cubehas dimensionn. The following

formula relates sizes and partitions for oddm.

((m + 1)/2)n · 2n
= (m + 1)n.

The case of even m is not so homogeneous. For vertices of Ĥ let k be the number of components, not equal to m/2,
0 ≤ k ≤ n. Thus n − k components are fixed tom/2 and k components are actual, creating (m/2)k-vertex sets in Ĥ . Each of
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Fig. 4. Highlighted vertices are elements of V (3, 4, 3), V (2, 3, 4) and V (4, 2, 2), respectively. V (3, 4, 3) composes a 3-dimensional, V (2, 3, 4) — a 2-
dimensional, and V (4, 2, 2) — a 1-dimensional binary cube.

these vertices has its V -equivalence class of size 2k. Schematically these relations are demonstrated in Fig. 5. The following
formula relates sizes and partitions for evenm.n

k=0(C
k
n · 2k

· (m/2)k) =
n

k=0(C
k
n · mk) = (m + 1)n.

We will apply two types of partitions in Ξ n
m+1: cube type and grid type, where the grid type means an arbitrary partition

of Ξ n
m+1 into the set of disjoint sub-grids covering Ξ n

m+1.
Define a multi step partitioning of Ξ n

m+1 in the following way:
In step i of the partitioning an arbitrary set Ξg(i) of current sub-grids is selected for further grid-partitioning (initially

we start with Ξ n
m+1), and the reminding set Ξc(i) of sub-grids is partitioned into cubes. Let Vi denote the set of equivalence

classes of Ξc(i). Let p ≥ 1 steps be applied, and V1, V2, . . . , Vp are the corresponding sets of vertical equivalence classes.
Consider V , some vertical equivalence class in Vi, and let E(V ) denote the corresponding sub-cube in En. Splitting of

E(V ) into Hansel chains will induce the splitting of V : each chain α1 < α2 < · · · < αt in E(V ) will induce a sequence
a1 < a2 < · · · < at of corresponding vertices in Ξ n

m+1, where two neighbor vertices in the sequence can belong to non
neighbor levels. Henceforth these sequences will be referred to as associated-chains, ai as origin vertices, and αi — as induced
vertices. The above description is summarized by the following lemma.

Lemma 1. Let Ξ n
m+1 is multi-step partitioned, and V be a vertical equivalence class obtained in some step of the partitioning.

If α1 < α2 < · · · < αt is a chain in E(V ), then a1, a2, . . . , at , is the associated chain in Ξ n
m+1, where a1, a2, . . . , at are origins

of α1, α2, . . . , αt . Conversely, if a1 < a2 < · · · < at belong to Ξ n
m+1, and induced vertices α1, α2, . . . , αt belong to the same

binary cube, then α1, α2, . . . , αt is a chain there.

A corollary is obtained in the form of:

Theorem 4. Let Ξ n
m+1 be multi-step partitioned, and V be a vertical equivalence class obtained in some step of the partitioning.

If F : Ξ n
m+1 → {0, 1} is a monotone function then f : E(V ) → {0, 1} is monotone, where f is defined as follows: for every

α ∈ E(V ), f (α) = 1 if and only if F(a) = 1, where a is the origin of α in Ξ n
m+1.

Thus we achieved a partitioning of the multi-valued grid into binary cubes in such a way that monotonicity is retained.
Themost valuable practical property of multi-step partitioning is in recursive use of the chain-computation-algebra [26].
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Fig. 5. Scheme of partitioning for evenm. The dashed part is Ĥ .

4. Identification of monotone functions

In this section we will use two cube-type partition algorithms for identification of monotone functions defined on Ξ n
m+1.

Let f : Ξ n
m+1 → {0, 1} be a monotone function defined with the help of an oracle Ωf .

Algorithm 1. • Partition the grid Ξ n
m+1 into binary cubes E1, . . . , E|Ĥ|

as it is described in the previous section.
• In each Ei, apply Hansel’s algorithm for identification of monotone functions fi : Ei → {0, 1}, defined as follows: for every

α ∈ Ei, fi(α) = 1 if and only if f (a) = 1, where a is the origin of α in Ξ n
m+1.

• Integrate the results of |Ĥ| binary recognitions into f .

In fact, Algorithm 1 (let us denote it by A1) can be considered in an arbitrary step of the multi-step partitioning of Ξ n
m+1.

Let p is the number of steps. For each fragment in the ith step, the partition produces a set of collinear binary cubes. It
is worth to mention, that in each particular step we consider all induced cubes and treat them independently, although
comparison of vertices could improve the result of recognition. The complexity of recognition (by an oracle) for one separate
cube is estimated as the sizes of its two middle layers. This is an overestimate in global terms, but we pay this cost for
parallelization. There are many other ways to the optimized parallelization. Above the simplest schemes that consider one
proper level of p partitions, the Cartesian products of chains of levels 1, 2, . . . , i ≤ p can be considered. They do not compose
a binary cube but are cube like and allow a proper chain split. These constructions are larger, which means that more
internal comparisons are involved in individual ‘‘sub-cubes’’ of our consideration. Let us just outline the typical costs for
parallelization.

Theorem 5. Let f : Ξ n
m+1 → {0, 1} be a monotone function defined with the help of an oracle Ωf . Let ∆A1 denote the Shannon

complexity of A1. Then,

∆A1 =

n
k=0

(Ck
n · (m/2)k · (C⌊k/2⌋

k + C⌊k/2⌋+1
k )) for even m and (4.1)

∆A1 = ((m + 1)/2)n · (C⌊n/2⌋
n + C⌊n/2⌋+1

n ) for odd m. (4.2)

Proof. The proof is obtained by Theorem 1, Theorem 4 and results of [1]. Sum in (4.1) corresponds to a partition of the cubes
of level p = 1 by the number of their coordinates that are equal tom/2. These coordinates, evidently, cannot be converted,
— they are fixed. And the size of some currently considered cube is determined by the number of the reminder coordinates.

Below we estimate the real numeric value of these complexities. Consider the case of odd m. First we estimate the term
C⌊n/2⌋
n asymptotically. For this we apply the well known formula from [9]

Ck
n ∼

2n+1

√
2πn

· exp


−
(2k − n)2

2n


, when n, k → ∞, and k −

n
2

= o(n3/4).

Inserting this into (4.2) we obtain that

∆A1 → ((m + 1)/2)n · 2 ·
2n+1

√
2πn

=
4(m + 1)n

√
2πn

for odd mwhen n → ∞.
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For even m consider the summand of (4.1) with k = m. It is easy to see that it is asymptotic to 4mn
√
2πn

when n → ∞. The
sub-sum for small k, say up to n/2 is small. The maximal summand is located close to n. To check this, we form the fraction
of terms Ck

n · (m/2)k ·
2k+1
√
2πk

for k + 1 and k. Equaling this to 1 we get k = n −
(k+1)

√
1+1/k

m which proves the claim. What is

important is the order of the complexity which is 4mn
√
2πn

.
Simple structures, and easily calculable quantities used in Algorithm 1 can serve as important elements in practical

identification algorithms. On the other hand, parallel computation of this recognition is possible, as we deal with disjoint
binary cubes.

Algorithm 2. • Partition Ξ n
m+1 into binary cubes E1, . . . , E|Ĥ|

as it is described in the previous section and let G be the
associated set of sub-grids of this partition.

• In each g ∈ G, apply Alekseev’s algorithm for identification of monotone function fg : g → {0, 1}, defined as follows: for
every α ∈ g , fg(α) = 1 if and only if f (a) = 1, where a is the origin of α in Ξ n

m+1.
• Integrate the results of |Ĥ| binary recognitions.

Theorem 6. Let f : Ξ n
m+1 → {0, 1} be amonotone function definedwith the help of an oracle. Consider m odd. f can be identified

by Algorithm 2 using (|MĤ | + ⌊log2m⌋ · |NĤ |) · (C⌊n/2⌋
n + C⌊n/2⌋+1

n ) accesses to the oracle, where MĤ and NĤ denote the sets of
vertices of middle levels of Ĥ (levels which contain vertices of rank ⌊mn/4⌋, ⌊mn/4⌋ + 1 respectively). The formula for even m
can be derived in a similar way.

Proof. The claim follows from Theorem 1, Theorem 4 and [1].

Algorithm 2 (let us denote it by A2) can be considered for an arbitrary step i ≤ p of the cube-split procedure. For each i
the partition produces a set of collinear multi-valued-multidimensional grids. We consider grids of one step and treat them
independently although there are comparisons between their vertices that can be employed for a better result in recognition.
Considering one levelwe use the fact that the complexity of (oracle) recognition on one separate sub-grid appears as a simple
function of the sizes of the two middle layers of that grid. This is an overestimate but we pay this cost for parallelization.

Again, having many other ways to the optimized parallelization let us just outline the typical costs for parallelization in
case of Algorithm 2.

For further estimates we refer to two references that contain initial formulas.
[17] considers the numberwn,m(N) of ordered partitions of the integer N into n parts each of size at least 0 but not larger

thanm, supposing that 1 ≤ n ≤ N . The following formula is derived for wn,m(N):

wn,m(N) =

n
i=0

(−1)iC i
nC

n−1
N+n−1−i(m+1). (4.3)

The formula, implicitly controls the part of positive summands of (4.3). When N +n−1− i(m+1) is negative or 0, or when
it is < n − 1 the summand becomes 0. It is correct to add these restrictions in an explicit way.

Then [17] derives an asymptotic estimate forwn,m(N) by the use of saddle point evaluation of integrals. Here is the result:
Let N,m ≥ 1, n =

2N
m (1 + c1(N−1/2)) for some absolute constant c1 > 0. Let σ =

m
6 (1 +

m
2 ) and N → ∞, then

wn,m(N) =
1

√
2πnσ

(m + 1)n exp


−(N −

mn
2 )2

2nσ


(1 − 2Φ(−n−1/10√σ) + O(exp(−n1/5))). (4.4)

HereΦ(x) is the Gaussian cumulative distribution, and the approximation error rate of the formula isO(n−1/5). Formula (4.4)
is useful but its asymptotic estimate is hard to use in our case. Rewrite condition n =

2N
m (1 + c1(N−1/2)) in an equivalent

form mn
2 = N + c1N−1/2. This shows that the formula does not work around N =

mn
2 which is the basic component in

Alekseev’s algorithm complexity.
Nowwe refer to [14] to consider its particular, but a deeply investigated sub-case. This result of [14] we have formulated

as (2.1).
Surprisingly, this postulation completes estimates of [17] helping to understand clearly the complexity of monotone

recognition and thus, — the cost we pay for parallelization. To justify this we need to enter into some elements of the proof
of (4.4) in [14].

Consider the set R = {r1, r2, . . . , rs}. Map the elements of R to layers on the plane so that comparable elements are placed
only in nearby layers, see [7]. Some r ≤ s layers will be used, and let us denote N(R, 1, k) = sk. Generalizing, consider the
Cartesian power Rn of R and note by N(R, n, k) the number of elements of layers k, k = 0, 1, . . . , nr .

Consider (on Rn) n identically distributed random variables ξi that attain integer values j, (0 ≤ j ≤ r) by probabilities
sj
s , respectively. It can be concluded easily that N(R, n, k) = P{

n
i=1 ξi = k} · sn. It follows by the use of B. Gnedenko’s
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theorem [10] that uniformly by k and with n → ∞

P


n

i=1

ξi = k


→

1
√
2πn

√
Dξ

· exp−
(k−nMξ)2

2nDξ , (4.5)

whereMξ and Dξ denote the expected value and dispersion of the random number ξ . (4.4) is a consequence of this formula.
It is necessary to note that the expressions in this formula do not obey the supposition that coefficients c1(R) are c2(R) are
constants. Consider in detail the case of Ξ n

m+1.
In Ξ n

m+1 poset R is just a simple linearly ordered set Ξm+1 = 0, 1, . . . ,m. Compute the values of the probabilistic
distribution in this case.

Mξ =

m
k=0

k
m + 1

=
m
2

and Dξ =

m
k=0

k2

m + 1
−

m
2

2
=

m(2m + 1)
6

−
m
2

2
=

m(m + 2)
12

.

Substituting Mξ and Dξ into (4.5) we obtain exactly the three first multipliers in expression (4.4), 1
√
2πnσ

(m +

1)n exp(−(N−
mn
2 )2

2nσ ). In this way we eliminated the constraint c1 > 0 in estimate (4.4) and obtain a simple and closed-form
estimate of an Alekseev type algorithm of multidimensional multi-valued monotone recognition.

Different versions and combinations of the two given algorithms are possible. It is also possible to combine the partition
cubes and their chains together with initial Alekseev chains. The main objective could be resolving the work with chains
in one direction hardening Alekseev’s algorithm. Concerning the issue of complexity of algorithms it is to mention that the
cube-split is not simpler than the chain-split algorithm, but it is extensively parallel and when a large number of processors
are available a total computation reduction can be achieved together with simple and interpretable constructions. So we
value the simple but effective grid split technique for the domain of monotone recognition. Another value of the technique
is for the domain of data mining algorithms, because of the match of frequent subset recognition of association rule mining
tasks to the monotone recognition technique considered in this paper.

5. Concluding remarks

Monotone Boolean functions and their extensions appear in diverse applications. The algorithmic and complexity issues
of monotone recognition are extensively studied. Unexpected new relations were found between themonotone recognition
structures of the multi-valued and the binary cases. The binary case is better investigated and the constructions are optimal
in terms of the Shannon criterion. The multi-valued case is harder with respect to constructions and interpretations. So the
cube-split technique introduced in this work aims to set up a bridge between these two domains. The outcome is in the form
of simple and predictable constructions for multi-valued grids that open further investigation and application perspectives.
In a simple but valuable form the introduced cube-split technique provides effectivemeans for parallel computations which
is very valuable in our age of high performance computation with supercomputers, clusters, grids and cloud applications.
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