Անվանում:

Analysis of a training sample and classification in one recognition model

Հեղինակ:

Zhuravlev Yuri

Տեսակ:

Article

Համահեղինակ(ներ):

Aslanyan Levon ; Ryazanov Valery

Չվերահսկվող բանալի բառեր:

classification algorithm ; logical regularity ; decision rule ; precedence ; feature ; training

Ամփոփում:

A problem of classification by precedents in partial precedence models is considered. An algorithm is presented for searching for maximum logical regularities of a class (LRCs) for consistent training tables. A two-level solution scheme of a problem is proposed for finding an optimal decision rule. First, LRCs are obtained by training data, and a mapping of the initial feature descriptions of objects into a space of points of a discrete unit cube is constructed. The objects of the training sample can be divided by a hyperplane in the latter space. It is suggested that a linear decision rule in the latter space that provides the maximum gap, similar to the support vector method, should be used as the decision rule.

Հրատարակման ամսաթիվ:

01.09.2014

DOI:

10.1134/S1054661814030183

ISSN:

1054-6618

Լեզու:

English

Ամսագրի կամ հրապարակման վերնագիր:

Pattern recognition and image analysis

Հատոր:

24

Համար:

3

URL:


Կազմակերպության անվանում:

Dorodnicyn Computing Centre, Russian Academy of Sciences, Moscow ; Institute for Informatics and Automation Problems

Երկիր:

Armenia ; Russia

Ինդեքսավորում:

Scopus