Անվանում:
Analysis of a training sample and classification in one recognition model
Հեղինակ:
Տեսակ:
Համահեղինակ(ներ):
Aslanyan Levon ; Ryazanov Valery
Չվերահսկվող բանալի բառեր:
classification algorithm ; logical regularity ; decision rule ; precedence ; feature ; training
Ամփոփում:
A problem of classification by precedents in partial precedence models is considered. An algorithm is presented for searching for maximum logical regularities of a class (LRCs) for consistent training tables. A two-level solution scheme of a problem is proposed for finding an optimal decision rule. First, LRCs are obtained by training data, and a mapping of the initial feature descriptions of objects into a space of points of a discrete unit cube is constructed. The objects of the training sample can be divided by a hyperplane in the latter space. It is suggested that a linear decision rule in the latter space that provides the maximum gap, similar to the support vector method, should be used as the decision rule.
Հրատարակման ամսաթիվ:
DOI:
ISSN:
Լեզու:
Ամսագրի կամ հրապարակման վերնագիր:
Pattern recognition and image analysis
Հատոր:
Համար:
URL:
Կազմակերպության անվանում:
Dorodnicyn Computing Centre, Russian Academy of Sciences, Moscow ; Institute for Informatics and Automation Problems