Անվանում:

On interval and cyclic interval edge colorings of (3,5)-biregular graphs

Հեղինակ:

Casselgren Carl Johan

Տեսակ:

Article

Համահեղինակ(ներ):

Petrosyan Petros ; Toftc Bjarne

Չվերահսկվող բանալի բառեր:

Interval edge coloring ; biregular graph ; Cyclic interval edge coloring ; Edge coloring

Ամփոփում:

A proper edge coloring f of a graph G with colors 1,2,3,…,t is called an interval coloring if the colors on the edges incident to every vertex of G form an interval of integers. The coloring f is cyclic interval if for every vertex v of G, the colors on the edges incident to v either form an interval or the set {1,…,t}∖{f(e):e is incident to v} is an interval. A bipartite graph G is (a,b)-biregular if every vertex in one part has degree a and every vertex in the other part has degree b; it has been conjectured that all such graphs have interval colorings. We prove that every (3,5)-biregular graph has a cyclic interval coloring and we give several sufficient conditions for a (3,5)-biregular graph to admit an interval coloring.

Հանձնման ամսաթիվը:

11.04.2016

Ընդունման ամսաթիվը:

15.09.2016

Հրատարակման ամսաթիվ:

14.11.2016

DOI:

10.1016/j.disc.2016.09.020

ISSN:

0012-365X

Լեզու:

English

Ամսագրի կամ հրապարակման վերնագիր:

Discrete Mathematics

Հատոր:

340

Համար:

11

URL:

սեղմել այստեղ՝ կապին հետևելու համար

լրացուցիչ տեղեկատվություն:

carl.johan.casselgren@liu.se ; pet_petros@ipia.sci.am ; btoft@imada.sdu.dk

Կազմակերպության անվանում:

Linköping University ; Yerevan State University ; University of Southern Denmark

Երկիր:

Armenia ; Sweden ; Denmark

Ինդեքսավորում:

WOS