Object

Title: Detecting communities from networks: comparisonof algorithms on real and synthetic networks

Հեղինակ:

Mkhitaryan Karen

Տեսակ:

Article

Համահեղինակ(ներ):

Mothe Josiane ; Haroutunian Mariam

Ամփոփում:

Communities in real world complex networks correspond to hidden structures that are composed of nodes tightly connected among themselves and weakly connected with other nodes in the network. There are various applications of automatic community detection in computer science, medicine, machine learning, sociology, etc. In this paper, we first present the existing community detection algorithms and evaluation measures used in order to consider the algorithms effectiveness. We then report a deep comparison of the algorithms using both large scale real world complex networks and artificial networks generated from stochastic block model. We found that Louvain algorithm is consistently the best across both the measures and the networks (8 real world and many varied synthetic networks) we tested. Fast Greedy and Leading Eigenvector algorithms are also good alternatives. Moreover, compared to related work, our paper considers both more algorithms and more networks.

Հրատարակիչ:

ITHEA

Հրատարակման ամսաթիվ:

2019

Նույնականացուցիչ:

oai:noad.sci.am:135911

ISSN:

1310-0513

Լեզու:

English

Ամսագրի կամ հրապարակման վերնագիր:

Information Theories and Applications

Հատոր:

26

Համար:

3

URL:


լրացուցիչ տեղեկատվություն:

karenmkhitaryan@gmail.com ; josiane.Mothe@irit.fr ; armar@ipia.sci.am

Կազմակերպության անվանում:

Institute for Informatics and Automation Problems ; Institutde Recherche enInformatique de Toulouse

Երկիր:

Armenia ; France

Object collections:

Last modified:

Mar 3, 2021

In our library since:

Jul 27, 2020

Number of object content hits:

83

All available object's versions:

https://noad.sci.am/publication/149504

Show description in RDF format:

RDF

Show description in OAI-PMH format:

OAI-PMH

This page uses 'cookies'. More information