Object

Title: Long Cycles in t-Tough Graphs with t > 1 ; Длинные циклы в t-жестких графах при t > і

Abstract:

It is proved that if G is a t-tough graph of order n and minimum degree δ with t > 1, then either G has a cycle of length at least min {n,2δ+4}or G is the Petersen graph.
; Доказывается, что любой n-вершинный t-жесткий граф с минимальной степенью δ при t > 1 имеет цикл длины не меньше min {n,2δ+4}.

Date submitted:

23.02.2019

Date accepted:

18.04.2019

Identifier:

oai:noad.sci.am:136048

DOI:

10.51408/1963-0032

ISSN:

0131-4645

Other identifier:

UDC 519.1

Language:

English

Journal or Publication Title:

Mathematical Problems of Computer Science

Volume:

51

URL:


Additional Information:

zhora@ipia.sci.am

Affiliation:

Institute for Informatics and Automation Problems ; Институт проблем информатики и автоматизации

Country:

Armenia

Indexing:

ASCI

Object collections:

Last modified:

Apr 1, 2021

In our library since:

Jul 30, 2020

Number of object content hits:

18

All available object's versions:

https://noad.sci.am/publication/149687

Show description in RDF format:

RDF

Show description in OAI-PMH format:

OAI-PMH

This page uses 'cookies'. More information