Object

Title: Method for video shot detection and separation

Հեղինակ:

Asatryan David

Տեսակ:

Article

Համահեղինակ(ներ):

Zakaryan Manuk

Ամփոփում:

Shot boundary detection is main step in video management systems like browsing and indexing. In this paper, we shortly describe an earlier proposed shot detection algorithm based on the structural properties of video frames. Two mathematical models for decision making, i.e. for similarity threshold determination are proposed and compared. The first model allows determination of threshold in case of using mean-square deviation for frames similarity and when the image pixel is assumed to be normal distributed random variable. The second model is based on using the structural similarity measure based on Weibull model for image gradient magnitude distribution. Global and adaptive approaches are considered for frames similarity threshold determination. Results of experiments to detect real video shots are given. It is shown that adaptive threshold determination method generally gives more acceptable results than global threshold determination method. At the same time the W2 based threshold determination approach gives more accurate results than PSNR based approach, therewith corresponds to HVS perception.

Հրատարակիչ:

ITHEA

Հրատարակման ամսաթիվ:

2014

Նույնականացուցիչ:

oai:noad.sci.am:135927

ISSN:

1314-6416

Լեզու:

English

Ամսագրի կամ հրապարակման վերնագիր:

Information Models and Analyses

Հատոր:

3

Համար:

3

URL:

click here to follow the link

լրացուցիչ տեղեկատվություն:

dasat@ipia.sci.am ; zakaryanmanuk@yahoo.com

Կազմակերպության անվանում:

Institute for Informatics and Automation Problems of NAS RA ; Armenian (Slavonic) University

Երկիր:

Armenia

Object collections:

Last modified:

May 3, 2021

In our library since:

Jul 27, 2020

Number of object content hits:

78

All available object's versions:

https://noad.sci.am/publication/149520

Show description in RDF format:

RDF

Show description in OAI-PMH format:

OAI-PMH

This page uses 'cookies'. More information